Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{256}+1\right)+1\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{256}+1\right)+1\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{256}+1\right)+1\)
\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{256}+1\right)+1\)
\(............................\)
\(A=\left[\left(2^{256}\right)^2-1\right]+1=2^{512}\)
\(a,\)\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)\(\Leftrightarrow14+2\left(ab+bc+ac\right)=0\)\(\Rightarrow\left(ab+bc+ac\right)^2=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=49\)
Ta có: \(a^2+b^2+c^2=14\Rightarrow\left(a^2+b^2+c^2\right)=196\)\(\Leftrightarrow a^{^{ }4}+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=196\)\(\Leftrightarrow\)\(a^4+b^4+c^4=98\)
3) Q=(3+1)(3^2+1)(3^4+1)....(3^3994+1)
=(3-1)(3+1)(3^2+1)(3^4+1)...(3^3994+1)
=(3^2-1)(3^2+1)(3^4+1)...(3^3994+1)
=(3^4-1)(3^4+1)...(3^3994+1)
=.........
=(3^3994-1)(3^3994+1)
=3^7988-1
1. \(A=x^6-x^4+x^3-x-x^4+x^2=x^3\left(x^3-x\right)+\left(x^3-x\right)-x\left(x^3-x\right)=\left(x^3-x\right)^2+\left(x^3-x\right)\)
Thay \(x^3-x=6\) vào A, ta được:
\(A=36+6=42\)
KL : A=42
2.
a) đa thức đã cho \(=ab^2+ac^2+abc+bc^2+ba^2+abc+ca^2+cb^2+abc\)
\(=\left(ab^2+ba^2+abc\right)+\left(ac^2+ca^2+abc\right)+\left(bc^2+cb^2+abc\right)\)
\(=ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)\)
\(=\left(ab+bc+ac\right)\left(a+b+c\right)\)
b) đa thức đã cho \(=\left(a^2c+abc\right)+\left(abc+b^2c\right)+\left(ac^2+bc^2\right)+\left(a^2b+ab^2\right)\)
\(=ac\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)+ab\left(a+b\right)\)
\(=\left(ac+bc+c^2+ab\right)\left(a+b\right)\)
\(=\left[\left(ac+ab\right)+\left(bc+c^2\right)\right]\left(a+b\right)\)
\(=\left[a\left(c+b\right)+c\left(b+c\right)\right]\left(a+b\right)\)
\(=\left(a+c\right)\left(b+c\right)\left(a+b\right)\)
Cho a+x2=2006, b+x2=2007, c+x2= 2008 và abc=3
Tính a/bc+b/ca+c/ab-1/a-1/b-1/c
.