K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

a) Hoành độ giao điểm của ( P ) và ( d ) là nghiệm phương trình:

\(x^2=2mx-2m+3\) (2)

<=> \(x^2-2mx+2m-3=0\)

Có: \(\Delta'=m^2-\left(2m-3\right)=m^2-2m+3=\left(m-1\right)^2+2>0\)với mọi m

=> Với mọi m phương trình (2) luôn có hai nghiệm phân biết

=> Với mọi m (d) luôn cắt ( P ) tại hai điểm phân biệt 

___________

c) Để phương trình (1) có nghiệm điều kiện là: \(\Delta'=\left(k-1\right)^2-\left(k-3\right)=k^2-3k+4=\left(k-\frac{3}{2}\right)^2+\frac{7}{4}>0\)với mọi m

=> Phương trình (1) có 2 nghiệm \(x_1;x_2\)với mọi m 

Áp dụng định lí viets ta có: \(\hept{\begin{cases}x_1+x_2=2\left(k-1\right)\\x_1.x_2=k-3\end{cases}}\)mà \(x_1=\frac{5}{3}x_2\)

nên : \(\frac{5}{3}x_2+x_2=2k-2\)<=> \(\frac{8}{3}x_2=2k-2\)<=> \(x_2=\frac{3}{4}\left(k-1\right)\)

khi đó: \(x_1=\frac{5}{3}x_2=\frac{5}{4}\left(k-1\right)\)

Suy ra \(x_1.x_2=k-3\)<=> \(\frac{15}{16}\left(k-1\right)^2=k-3\)

<=> \(15k^2-46k+63=0\)(3)

có: \(\Delta\)<0 

=> (3) vô nghiệm

=> không tồn tại k

Đây là cách làm của thầy mk:

Nối đường thẳng AB ta được  pt có dạng  :y = ax + b

Vì B(x2;y2) và A(x1;y1) Thuộc AB 

=> y2-y1 = ax2+b-(ax1-b) = ax2+b-ax1-b

Hay y2-y1 = a(x2-x1) (a khác 0,vì nếu a = 0 thì y2=y1)

Ta lại có: y-y1=ax+b-ax- b = a(x-x1)

=>\(\frac{y-y_1}{y_2-y_1}=\frac{a\left(x-x_1\right)}{a\left(x_2-x_1\right)}=\frac{x-x_1}{x_2-x_1}\)      (vì a khác 0)

Vậy....

Còn đây là cách hiểu của mk:

Ta có A(x1;y1) => Hàm số A có dạng y1=ax+b

B(x2;y2) => Hàm số B có dạng y2=ax2+b

=> y2-y1 = ax2 + b - ax1 - b = ax2-ax1

hay y2-y1 = a(x2-x1)

Từ đề ta lại có  : 

y -y1 = ax + b - ax1-b = ax - ax1 

Hay y-y1 = a(x-x1)

 =>\(\frac{y-y_1}{y_2-y_1}=\frac{a\left(x-x_1\right)}{a\left(x_2-x_1\right)}=\frac{x-x_1}{x_2-x_1}\)      

Ê chỗ cách làm của thầy mk là nối đoạn thẳng nhé.