Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Để \(\overline{1996ab}\)chia hết cho cả 2 và 5 thì b=0
Thay b=0, ta được \(\overline{1996a0}⋮9\)thì 1+9+9+6+a+0\(⋮\)9
25\(⋮\)9
\(\Rightarrow\)a=2
Vậy a=2 và b=0.
2. Đề \(\overline{m340n}⋮5\)thì n\(\in\){0;5}
Với n=5 thì m+3+4+0+5=m+12\(⋮\)9
\(\Rightarrow\)m=6
Với n=0 thì m+3+4+0+0=m+7\(⋮\)9
\(\Rightarrow\)m=2
Vậy m=6 và n=5 hoặc m=2 và n=0.
Để \(\overline{2007ab}\)chia hết cho cả 2 và 5 thì b=0
Thay b=0, ta được \(\overline{2007a0}⋮9\)thì 2+0+0+7+a+0=a+9\(⋮\)9
\(\Rightarrow\)a=0
Vậy a=0 và b=0
Lưu ý : dấu \(⋮\)là chia hết cho
Để chia cho 2 dư 1: -> y gồm các số: 1,3,5,7,9 (1)
Để chia cho 5 dư 1: -> y gồm các số: 1 và 6 (2)
Từ (1) và (2) => y=1
x7531 chia cho 9 dư 1 -> x+7+5+3+1 chia 9 dư 1 <=> x+16 chia 9 dư 1
=> x = 3
Vậy số cần tìm là 37531
Bài 1:
Đặt \(X=\overline{4a2b}\)
X chia hết cho 2;5 nên X chia hết cho 10
=>X có chữ số tận cùng là 0
=>b=0
=>\(X=\overline{4a20}\)
X chia hết cho 9
=>\(\left(4+a+2+0\right)⋮9\)
=>\(\left(a+6\right)⋮9\)
=>a=3
vậy: X=4320
Bài 2:
Đặt \(A=\overline{20a2b}\)
A chia hết cho 25 mà A có tận cùng là \(\overline{2b}\)
nên b=5
=>\(A=\overline{20a25}\)
A chia hết cho 9
=>\(2+0+a+2+5⋮9\)
=>\(a+9⋮9\)
=>\(a⋮9\)
=>\(a\in\left\{0;9\right\}\)
Bài 3:
Đặt \(B=\overline{3x57y}\)
B chia 5 dư 3 nên B có tận cùng là 3 hoặc 8(1)
B chia 2 dư 1 nên B có tận cùng là số lẻ (2)
Từ (1),(2) suy ra B có tận cùng là 3
=>y=3
=>\(B=\overline{3x573}\)
B chia hết cho 9
=>\(3+x+5+7+3⋮9\)
=>\(x+18⋮9\)
=>\(x\in\left\{0;9\right\}\)
Bài 5:
Vì số bút chì khi đem chia 5 hoặc 3 thì vừa hết số bút chì sẽ vừa chia hết cho 5; vừa chia hết cho 3
=>Số bút chì sẽ chia hết cho 15
mà số bút chì có nhiều hơn 20 chiếc và ít hơn 35 chiếc
nên số bút chì là 30 chiếc
Bài 4:
M chia 2 dư 1
=>y chia 2 dư 1
mà 0<=y<=9
nên \(y\in\left\{1;3;5;7;9\right\}\left(9\right)\)
M chia 5 dư 3
=>y chia 5 dư 3
mà 0<=y<=9
nên \(y\in\left\{3;8\right\}\left(10\right)\)
Từ (9) và (10) suy ra y=3
=>\(M=\overline{6x523}\)
M chia hết cho 9
=>\(6+x+5+2+3⋮9\)
=>\(x+16⋮9\)
mà 0<=x<=9
nên x=2
Vậy: Số cần tìm là M=62523
A chia hết cho 2 và 5. Vậy y=0
Thấy y=0 ta có số 1996×0
Vì a : 9 nên 1+9+9+6+x+0 chia hết cho 9. Hay x+25 chia hết cho 9.=>x=2
Vậy ta có số 19960 chia hết cho 2,5 và 9.
A chia hết cho 2 và 5 . Vậy y=0
Thấy y = 0 ta có số 1996x0
Vì A chia hết cho 9 nên 1+9+9+6+x+0 chia hết cho9. Hay x + 25 chia hết cho 9. => x=2
Vậy ta có số 199620 chia hết cho 2, 5 và 9.
\(\overline{759a95b}\)chia cho \(5\)dư \(1\)nên \(b=1\)hoặc \(b=6\).
Mà \(\overline{759a95b}\)chia cho \(2\)dư \(1\)suy ra \(b=1\).
\(\overline{759a95b}\)chia cho \(9\)dư \(1\)suy ra tổng các chữ số của nó chia cho \(9\)dư \(1\).
\(7+5+9+a+9+5+1=36+a\)chia cho \(9\)dư \(1\)suy ra \(a=1\).
Vậy \(a=1,b=1\).
\(\overline{5a127b}\) : 2, 5, 9 đều được số dư là số dư lớn nhất có thể nên khi thêm 1 vào số dư thì phép chia trở thành phép chia hết, số bị chia tăng thêm 1 đơn vị và thương tăng thêm 1 đơn vị.
Từ lập luận trên ta có: \(5a127b\) + 1 ⋮ 2, 5, 9
⇒ b + 1 = 10 và 5 + a + 1 + 2 + 7 + b + 1 ⋮ 9
b+ 1 = 10 => b = 9;
Thay b = 9 vào biểu thức : 5 + a + 1 + 2 + 7 + b + 1 ⋮ 9 ta có
5 + a + 1 + 2 + 7 + 9 + 1 ⋮ 9 => 7 + a ⋮ 9 ⇒ a = 2;
Vậy a = 2; b = 9 số thỏa mãn đề bài : 521279
5 : 2, 5, 9 đều được số dư là số dư lớn nhất có thể nên khi thêm 1 vào số dư thì phép chia trở thành phép chia hết, số bị chia tăng thêm 1 đơn vị và thương tăng thêm 1 đơn vị.
Từ lập luận trên ta có: 5a127b5a127b + 1 ⋮ 2, 5, 9
⇒ b + 1 = 10 và 5 + a + 1 + 2 + 7 + b + 1 ⋮ 9
b+ 1 = 10 => b = 9;
Thay b = 9 vào biểu thức : 5 + a + 1 + 2 + 7 + b + 1 ⋮ 9 ta có
5 + a + 1 + 2 + 7 + 9 + 1 ⋮ 9 => 7 + a ⋮ 9 ⇒ a = 2;
Vậy a = 2; b = 9 số thỏa mãn đề bài : 521279
\(x=8\)
\(y=0\)