Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+3a^2b+3ab^2+c^3-3abc-3a^2b-3ab^2=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ac\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)=0\)
\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
\(\Rightarrow M=\frac{a^{2019}}{b^{2019}}+\frac{b^{2019}}{c^{2019}}+\frac{c^{2019}}{a^{2019}}=\frac{a^{2019}}{a^{2019}}+\frac{b^{2019}}{b^{2019}}+\frac{c^{2019}}{c^{2019}}=1+1+1=3\)
1) Có: \(a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow\left(a+b\right)^3=-c^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3-3abc=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
2)Có: \(a+b-c=0\)
\(\Leftrightarrow a+b=c\)
\(\Leftrightarrow\left(a+b\right)^3=c^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=c^3\)
\(\Leftrightarrow a^3+b^3+3abc=c^3\)
\(\Leftrightarrow a^3+b^3-c^3=-3abc\)
Lời giải:
\(a^3+b^3=c^3+d^3\)
$\Leftrightarrow (a+b)^3-3ab(a+b)=(c+d)^3-3cd(c+d)$
Mà $a+b=c+d$ nên $ab(a+b)=cd(c+d)$
Đến đây ta xét 2TH:
TH $a+b=c+d=0$ thì $a^{2019}+b^{2019}=c^{2019}+d^{2019}=0$ (đpcm)
TH $a+b=c+d\neq 0$ thì $ab=cd\Leftrightarrow \frac{a}{d}=\frac{c}{b}$
Đặt $\frac{a}{d}=\frac{c}{b}=t\Rightarrow a=dt; c=bt$
Khi đó:
$a+b=c+d$
$\Leftrightarrow dt+b=bt+d\Leftrightarrow (t-1)(d-b)=0$
Nếu $t-1=0\Rightarrow a=d; c=b$
$\Rightarrow a^{2019}=d^{2019}; b^{2019}=c^{2019}$
$\Rightarrow a^{2019}+b^{2019}=c^{2019}+d^{2019}$ (đpcm)
Nếu $d-b=0\Leftrightarrow b=d\Rightarrow a=c$
$\Rightarrow a^{2019}+b^{2019}=c^{2019}+d^{2019}$ (đpcm)
Vậy..........
Tham khảo lời giải tại đây:
Câu hỏi của Nguyen ANhh - Toán lớp 8 | Học trực tuyến
\(a)\) Ta có :
\(a+b+c=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)^3=0^3\)
\(\Leftrightarrow\)\(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(a+b+c=0\)\(\Rightarrow\)\(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
\(\Leftrightarrow\)\(a^3+b^3+c^3+3.\left(-c\right)\left(-a\right)\left(-b\right)=0\)
\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\)\(a^3+b^3+c^3=3abc\) ( đpcm )
Vậy \(a^3+b^3+c^3=3abc\)
Chúc bạn học tốt ~
a, a+b+c=0 => a+b=-c
=>(a+b)3=(-c)3
=>a3+3a2b+3ab2+b3=-c3
=>a3+3ab(a+b)+b3=-c3
Mà a+b=-c
=>a3-3abc+b3=-c3
=>a3+b3+c3=3abc (đpcm)
b, \(P=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{a^3+b^3+c^3}{abc}\)
mà a3+b3+c3=3abc (bài a)
\(\Rightarrow P=\frac{3abc}{abc}=3\)
Vậy P=3
phân tích a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0
=>a=b=c(vì a+b+c khác 0)
thay a=b=c vào P
Lời giải:
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0\)
\(\Leftrightarrow (a+b)^3+c^3-3ab(a+b+c)=0\)
\(\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0\)
\(\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0\)
Vì $a+b+c\neq 0$ nên $a^2+b^2+c^2-ab-bc-ac=0$
$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Vì $(a-b)^2, (b-c)^2, (c-a)^2\geq 0$ với mọi $a,b,c$ nên để tổng của chúng bằng $0$ thì:
$\Rightarrow (a-b)^2=(b-c)^2=(c-a)^2=0$
$\Leftrightarrow a=b=c$
Do đó:
\(P=\left(2019+\frac{a}{b}\right)\left(2019+\frac{b}{c}\right)\left(2019+\frac{c}{a}\right)\)
\(=(2019+1)(2019+1)(2019+1)=2010^3\)
Lời giải:
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0\)
\(\Leftrightarrow (a+b)^3+c^3-3ab(a+b+c)=0\)
\(\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0\)
\(\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0\)
Vì $a+b+c\neq 0$ nên $a^2+b^2+c^2-ab-bc-ac=0$
$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Vì $(a-b)^2, (b-c)^2, (c-a)^2\geq 0$ với mọi $a,b,c$ nên để tổng của chúng bằng $0$ thì:
$\Rightarrow (a-b)^2=(b-c)^2=(c-a)^2=0$
$\Leftrightarrow a=b=c$
Do đó:
\(P=\left(2019+\frac{a}{b}\right)\left(2019+\frac{b}{c}\right)\left(2019+\frac{c}{a}\right)\)
\(=(2019+1)(2019+1)(2019+1)=2010^3\)