Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a = 1-x
\(^{a^3+b^3=2=>b^3=2-a^3=2-\left(1-x\right)^3=1+x^3-3x^2+3x\le x^3+3x^2+3x+1=\left(x+1\right)^3=>b^3\le\left(x+1\right)^3=>b\le x+1}\)N=a+b\(\le\)1-x+x+1=2
Vậy Max N = 2 <=> x=0 <=> a=b=1
a3 + b3 = (a + b).(a2 - ab + b2) = 2
ta có: a2 - ab + b2 = (a - (b/2))2 + 3b2/4 => a2 - ab + b2 \(\ge\) 0. Do đó, a + b > 0 (do 2> 0)
Áp dụng bất đẳng thức Bu nhi cốp xki ta có: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Rightarrow\left(a+b\right)^4\le4\left(a^2+b^2\right)^2\)
Tiếp tục áp dụng bất đẳng thức Bunhi cốp xki với các số \(a\sqrt{a};\sqrt{a};b\sqrt{b};\sqrt{b}\) ta có
=> \(\left(a+b\right)^4\le4\left(a^2+b^2\right)^2=4\left(a\sqrt{a}.\sqrt{a}+b\sqrt{b}.\sqrt{b}\right)^2\le4.\left(a^3+b^3\right)\left(a+b\right)=8\left(a+b\right)\)
Do a + b > 0 nên \(\left(a+b\right)^3\le8\Rightarrow a+b\le\sqrt[3]{8}=2\)
=> Max N = 2 khi a = b = 1
giả sử a + b > 2.
đặt a = x + y ; b = x - y, ta có :
a + b = 2x > 2 \(\Rightarrow\)x > 1 ( 1 )
Ta có : a3 + b3 = ( x + y )3 + ( x - y )3 = 2x3 + 6xy2
do ( 1 ) nên 2x3 > 2 ; 6xy2 \(\ge\)0 .
vậy a3 + b3 > 2, trái với giả thiết
\(\Rightarrow\)a + b \(\le\)2
\(a^3+b^3=2\Rightarrow b=\sqrt[3]{2-a^3}\)
\(a+b=a+\sqrt[3]{2-a^3}\)
Ta chứng minh: \(a+\sqrt[3]{2-a^3}\le2\Leftrightarrow a-2\le\sqrt[3]{a^3-2}\Leftrightarrow\left(a-2\right)^3\le a^3-2\)
\(\Leftrightarrow-6a^2+12a-6\le0\Leftrightarrow6\left(a-1\right)^2\ge0\text{ }\left(\text{đúng }\forall a\in R\right)\)
Vậy \(a+b\le2.\)
Đẳng thức xảy ra khi \(a=b=1.\)
KL: GTLN của a+b là 2.
Mr Lazy đây là tìm điểm cực trị chứ không phải là chứng minh bạn ơi
Câu 2a
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2=\left(a^2+b^2\right)c^2+d^2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2c^2+b^2d^2+a^2d^2+b^2c^2=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)
\(\Leftrightarrow a^2c^2+b^2d^2+a^2d^2+b^2c^2-\left(a^2c^2+b^2d^2+a^2d^2+b^2c^2\right)=0\)
\(\Leftrightarrow0=0\)( đpcm )
Câu 2b
\(\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2c^2+2abcd+b^2d^2\le\left(a^2+b^2\right)c^2+d^2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2c^2+2abcd+b^2d^2\le a^2c^2+b^2c^2+a^2d^2+b^2d^2\)
\(\Leftrightarrow2abcd\le b^2c^2+a^2d^2\)
\(\Leftrightarrow0\le b^2c^2-2abcd+a^2d^2\)
\(\Leftrightarrow0\le\left(bc-ad\right)^2\)( đpcm )
Câu 4a
\(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow\left(\frac{a+b}{2}\right)^2\ge ab\)
\(\Leftrightarrow\frac{\left(a+b\right)^2}{4}\ge ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( đpcm )
Câu 4c
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow3a+5b\ge2\sqrt{3a.5b}=2\sqrt{15ab}\)
\(\Rightarrow12\ge2\sqrt{15ab}\)
\(\Rightarrow6\ge\sqrt{15ab}\)
\(\Rightarrow6^2\ge15ab\)
\(\Rightarrow36\ge15ab\)
\(\Rightarrow ab\le\frac{12}{5}\)
\(\Leftrightarrow P\le\frac{12}{5}\)
Vậy GTLN của \(P=\frac{12}{5}\)
a+b+c=0
⇔⇔(a+b+c)2=0
⇔⇔a2+b2+c2+2ab+2bc+2ca=0 mà a2+b2+c2=2
⇒⇒2ab+2bc+2ca=-2
⇔⇔(2ab+2bc+2c)2=4
⇔⇔4a2b2+4c2b2+4a2c2+8abc(a+b+c)=4 mà a+b+c=0
⇒⇒4a2b2+4c2b2+4a2c2=4 (1)
⇔⇔2a2b2+2c2b2+2a2c2=2
Mặt khác:
a2+b2+c2=2 ⇒⇒(a2+b2+c2)2=4
⇔⇔a4+b4+c4+2(a2b2+b2c2+c2a2)=4 (2)
Từ (1) và (2) ⇒⇒4a2b2+4c2b2+4a2c2=a4+b4+c4+2(a2b2+b2c2+c2a2)
⇔⇔2a2b2+2c2b2+2a2c2=a4+b4+c4
⇒⇒a4+b4+c4=2 (vì 2a2b2+2c2b2+2a2c2=2)
\(a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow3\left(a^3+b^3\right)\ge3ab\left(a+b\right)\Leftrightarrow4\left(a^3+b^3\right)\ge a^3+b^3+3ab\left(a+b\right)=\left(a+b\right)^3\)
<=> \(2^3\ge\left(a+b\right)^3\)