K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

Có : (a^3-3ab^2)^2 = 5^2 = 25

<=> a^6-6a^4b^2+9a^2b^2 = 25

(b^3-3a^2b)^2 = 10^1 = 100

<=> b^6-6a^2b^4+9a^4b^2 = 100

=> 5^3 = 125 = 25 + 100 = a^6-6a^4b^2+9a^2b^4+b^6-6a^2b^4+9a^4b^2 = a^6+b^6+3a^2b^4+3a^4b^2 = (a^2+b^2)^3

=> a^2+b^2 = 5

=> D = 312018.(a^2+b^2) = 312018 . 5 = 1560090

Tk mk nha

3 tháng 1 2018

tk bn nha nhưng mà (a^3 - 3ab^2)^2 = a^6 - 9a^2b^4 mà bn

2 tháng 9 2017

\(.\)M= bn ghi lại đề nha ^.^

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left[\left(a^2+2ab+b^2\right)-2ab\right]+6a^2b^2\left(a+b\right)\)

\(=1^3-3ab.1+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2.1\)

\(=1-3ab+3ab\left(1-2ab\right)+6a^2b^2\)

\(M=1-3ab+3ab-6a^2b^2+6a^2b^2\)\(=1\)

k cho mình nha bn thanks nhìu <3 <3       (^3^)

2 tháng 9 2017

2. \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)(1)

Đặt \(x^2+5x+4=t\)

(1) = \(t.\left(t+2\right)-24\)

\(=t^2+2t+1-25\)

\(=\left(t+1\right)^2-25\)

\(=\left(t+1-5\right)\left(t+1+5\right)\)

\(=\left(t-4\right)\left(t+6\right)\)(2)

Thay \(t=x^2+5x+4\)vào (2) ta có:

(2) = \(\left(x^2+5x+4-4\right)\left(x^2+5x+4+6\right)\)

\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)\(=x\left(x+5\right)\left(x^2+5x+10\right)\)

k mình nha bn <3 thanks

18 tháng 7 2015

ta có: (a3-3ab2)2=a6-6a4b2+9a2b4=25

(b3-3a2b)2=b6-6a2b4+9a4b2=100

=> (a3-3ab2)2-(b3-3a2b)2=a6-6a4b2+9a2b4+b6-6a2b4+9a4b2=125

<=>a6+3a4b2+3a2b4+b6=125

<=>(a2+b2)3=125

=>a2+b2=5

13 tháng 12 2016

Sửa lại (a3-3ab2)2+(b3-3a2b)2 là OK

1, \(A=x^3+y^3+3xy\)

\(=x^3+3x^2y+3xy^2+y^2+3xy-3x^2y-3xy^2\)

\(=\left(x+y\right)^3+3xy-3xy\left(x+y\right)\)

Thay x +1 = 1 ta có 

\(1^3+3xy-3xy.1=1+3xy-3xy=1\)

28 tháng 2 2021

\(\left(a^3-3ab^2\right)^2=25\Leftrightarrow a^6-6a^4b^2+9a^2b^4=25\)

\(\left(b^3-3a^2b\right)^2=100\Leftrightarrow b^6-6a^2b^4+9a^4b^2=100\)

\(\Rightarrow a^6-6a^4b^2+9a^2b^4+b^6-6a^2b^4+9a^4b^2=125\)

\(\Leftrightarrow\left(a^2+b^2\right)^2=125\Leftrightarrow a^2+b^2=5\)

Thay a2+b2=5 vào S=2018a2+2018b2=2018(a2+b2)=2018.5=10090

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right]=0\)

Do \(a+b+c\ne0\) nên \(\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab=0\)

\(\Leftrightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-bc+c^2\right)+\left(c^2-ca+a^2\right)=0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)

\(\Rightarrow\)\(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

...

2 tháng 12 2018

Cảm ơn bạn nha