Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.\(\left(x+1\right)\left(x+3\right)\sqrt{\left(1+x\right)\left(3-x\right)}=2-\left(x+1\right)^2\)
ma cau cui duoc 3610 khong ma noi nguoi khac phai cui 3610 the cui 900 la duoc roi ma cau con doi hoi nhieu
Sửa đề: Chứng minh: \(2\le\frac{a^2+b^2+c^2}{a+b+c}+ab+bc+ca\le4\)
Đặt \(a+b+c=3u;ab+bc+ca=3v^2\)
\(\Rightarrow3\left(9u^2-6v^2\right)+3v^2=12\Rightarrow9u^2-6v^2+v^2=4\) (1)
\(\Rightarrow a^2+b^2+c^2=9u^2-6v^2=4-v^2\). Mặt khác từ (1) ta cũng suy ra:
\(\left(3u\right)^2=9u^2=4+5v^2\Rightarrow a+b+c=3u=\sqrt{4+5v^2}\)
Từ giả thiết ta có: \(12=3\left(a^2+b^2+c^2\right)+ab+bc+ca\ge4\left(ab+bc+ca\right)\)
\(\Rightarrow3v^2=ab+bc+ca\le3\Rightarrow0\le v\le1\) (vì \(v=\sqrt{\frac{ab+bc+ca}{3}}\ge0\)..)
Vì vậy ta cần chứng minh: \(2\le f\left(v\right)=\frac{4-v^2}{\sqrt{4+5v^2}}+3v^2\le4\) với \(0\le v\le1\)
Dễ thấy hàm số này đồng biến vì vậy f(v) đạt min tại v = 0 tức \(f\left(v\right)_{min}=2\)
Đạt Max tại v = 1 tức \(f\left(v\right)_{max}=4\)
Ta có đpcm.
P/s: Em mới học BĐT nên không chắc đâu, nhất là khúc mà em in đậm ấy.
Câu a thì mình chịu rồi @@ sorry nha
Còn câu b, bạn thấy rằng x2-3x+2-x2+x+1+2x-3=0 đúng không nào?
Nếu như bạn còn nhớ công thức a+b+c=0 <=> a3+b3+c3=3abc
Thì chắc chắn là bạn sẽ giải ra được bài này thôi. Đáp số là x=1 hoặc x=2 hoặc x=3/2 bạn nhé.
Chúc bạn giải được câu b này. Nếu như vẫn còn thắc mắc thì trả lời lại cho mình để mình gừi bài giải chi tiết nhé, do giờ mình đang bận @@
A = a3 + b3 +c3 -3abc thành nhân tử.
Lời giải:
Từ (a+b)3= a3 + 3a2b +3ab2 + b3
= a3 + b3 + 3ab (a+b)
Ta suy ra: a3 + b3 = (a+b)3 - 3ab (a+b) (1)
áp dụng hằng đẳng thức (1) vào giải bài toán ta có:
A = (a3 + b3) + c3 - 3abc
= (a+b)3 - 3ab (a+b) + c3 - 3abc
= (a+b)3 + c3 - 3ab (a+b) - 3abc
= (a+b+c) (a2 +2ab + b2 -ac - bc + c2 - 3ab)
= (a+b+c) (a2+ b2 +c2 -ab - bc - ac) (*)
~Hok tốt~
a2+b2+c2=1
|a|;|b|;|c|≤1
−1≤a;b;c≤1
(a+1)(b+1)(c+1)≥0
ab+bc+ac+a+b+c+1+abc≥0(1)
Mặt khác ta có :
(1+a+b+c)2≥0
a2+b2+c2+2(ab+bc+ac)+2(a+b+c)+1≥0
2(a+b+c+ab+bc+ac+1)≥0
(a+b+c+ab+bc+ac+1)≥0(2)
Cộng vế (1) , (2 ) vào ta được đpcm
à thêm a,b,c>0 nha
Theo BĐT Svacxo có : \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(< =>1\ge\frac{\left(a+b+c\right)^2}{3}< =>\left(a+b+c\right)^2\le3< =>a+b+c\le\sqrt{3}\)
Dấu "=" xảy ra \(< =>a=b=c=\frac{1}{\sqrt{3}}\)