Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\Leftrightarrow a^2-b^2+c^2\ge a^2+b^2+c^2-2ab+2ac-2bc\)
\(\Leftrightarrow b^2-ab+ac-bc\le0\)
\(\Leftrightarrow b\left(b-a\right)-c\left(b-a\right)\le0\)
\(\Leftrightarrow\left(b-c\right)\left(b-a\right)\le0\) (luôn đúng do \(a\ge b\ge c\))
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}a=b\\b=c\end{matrix}\right.\)
b/ Tương tự như câu trên:
\(a^2-b^2+c^2-d^2\ge\left(a-b+c\right)^2-d^2=\left(a-b+c-d\right)\left(a-b+c+d\right)\ge\left(a-b+c-d\right)^2\)
áp dụng AM-GM
a2+4>=4a
b2+4>=4b
c2+4>=4c
d2+4>=4d
nhân vế suy ra ĐPCM
\(a^2+b^2+c^2+d^2+4\ge2\left(a+b+c+d\right)\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+4\ge2a+2b+2c+2d\)
\(\Leftrightarrow a^2-2a+1+b^2-2b+1+c^2-2c+1+d^2-2d+1\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2+\left(d-1\right)^2\ge0\)\(\left(\text{luôn đúng với mọi a,b,c,d}\right)\)
\(\text{Vậy }a^2+b^2+c^2+d^2+4\ge2\left(a+b+c+d\right)\)
\(\text{Dấu "=" xảy ra khi a=b=c=d=1}\)
Cách khác cho bạn nè:
Áp dụng BĐT cô si cho 2 số không âm ta có:
\(a^2+1\ge2a\)
\(b^2+1\ge2b\)
\(c^2+1\ge2c\)
\(d^2+1\ge2d\)
Cộng vế với vế ta được a2+1+b2+1+c2+1+d2+1>2a+2b+2c+2d
=>a2+b2+c2+d2+4>2(a+b+c+d)
Vì a;b;c là 3 cạnh của tam giác nên mỗi nhân tử của VP đều dương,áp dụng bđt Cauchy:
\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=b\)
\(\sqrt{\left(b+c-a\right)\left(a+c-b\right)}\le\frac{b+c-a+a+c-b}{2}=c\)
\(\sqrt{\left(a+c-b\right)\left(a+b-c\right)}\le\frac{a+c-b+a+b-c}{2}=a\)
Nhân theo vế => ddpcm "=" khi a=b=c
ta có : \(a^8+b^8-a^6b^2-a^2b^6\ne\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\)
và \(a^2b^2\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\) cũng có thể âm
\(\Rightarrow\) sai