K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : a^2+b^2 +c^2 >= ab+bc+ac ==> a^2+b^2+c^2+2ab+2bc+2ac>=3(ab+bc+ac) => (ab+bc+ac)<= ((a+b+c)^2)/3 Dấu đẳng thức xảy ra khi và chỉ khi a=b=c Áp dụng : được Max B = 3 khi a=b=c=1
HT

6 tháng 10 2021

a = b = c 1ht

TTLTL*

HHT

24 tháng 4 2021

a)Ta có:

 \(a+b+ab=a^2+b^2\).

\(\Leftrightarrow a^2-ab+b^2=a+b\).

Ta có:

\(P=a^3+b^3+2020\).

\(P=\left(a+b\right)\left(a^2-ab+b^2\right)+2020\).

\(P=\left(a+b\right)\left(a+b\right)+2020\)(vì \(a^2-ab+b^2=a+b\)).

\(P=\left(a+b\right)^2+2020\).

Ta có:

\(\left(a+b\right)^2\ge0\forall a;b\).

\(\Rightarrow\left(a+b\right)^2+2020\ge2020\forall a;b\).

\(\Rightarrow P\ge2020\).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}a+b+ab=a^2+b^2\\\left(a+b\right)^2=0\end{cases}}\Leftrightarrow a=b=0\).

Vậy \(maxP=2020\Leftrightarrow a=b=0\).

24 tháng 4 2021

b)\(A=\frac{27-12x}{x^2+9}\).

Vì \(x^2+9>0\forall x\)nên \(A\)luôn được xác định.

 \(A=\frac{27-12x}{x^2+9}=\frac{4x^2-4x^2+27-12x}{x^2+9}=\frac{\left(4x^2+36\right)-\left(4x^2+12x+9\right)}{x^2+9}\)

\(A=\frac{4\left(x^2+9\right)-\left(2x+3\right)^2}{x^2+9}=4-\frac{\left(2x+3\right)^2}{x^2+9}\).

Ta có:

\(\left(2x+3\right)^2\ge0\forall x\).

\(\Rightarrow\frac{\left(2x+3\right)^2}{x^2+9}\ge0\forall x\)(vì \(x^2+9>0\forall x\)).

\(\Rightarrow-\frac{\left(2x+3\right)^2}{x^2+9}\le0\forall x\).

\(\Rightarrow4-\frac{\left(2x+3\right)^2}{x^2+9}\le4\forall x\).

\(\Rightarrow A\le4\).

Dấu bằng xảy ra.

\(\Leftrightarrow\left(2x+3\right)^2=0\Leftrightarrow x=-\frac{3}{2}\).

Vậy \(maxA=4\Leftrightarrow x=-\frac{3}{2}\).

26 tháng 7 2016

bài này dễ ẹt ak 

nhưng giúp mình bài này đi 

chotam giac abc . co canh bc=12cm, duong cao ah=8cm

a> tinh s tam giac abc

b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )

c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

7 tháng 1 2016

tìm giá trị của abc nhé