Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a - b)2 + (b - c)2 + (c - a)2 = 3(a2 + b2 + c2 - ab - bc - ca)
<=> (a - b)2 + (b - c)2 + (c - a)2 = \(\dfrac{3}{2}\)(2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca)
<=> (a - b)2 + (b - c)2 + (c - a)2 = \(\dfrac{3}{2}\)[(a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2)]
<=> (a - b)2 + (b - c)2 + (c - a)2 = \(\dfrac{3}{2}\)[(a - b)2 + (b - c)2 + (c - a)2]
<=> \(\dfrac{1}{2}\)[(a - b)2 + (b - c)2 + (c - a)2] = 0
<=> a = b = c
Cách 2 :
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=3\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=3\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=3\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Do \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\forall a;b;c\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\end{matrix}\right.\)
\(\Rightarrow a=b=c\left(đpcm\right)\)
(a-b)2+(b-c)2+(c-a)2=4(a2+b2+c2-ab-ac-bc)
=>a2-2ab+b2+b2-2bc+c2+c2-2ac+a2=4a2+4b2+4c2-4ab-4ac-4bc
=>2a2+2b2+2c2-2ab-2ac-2bc=4a2+4b2+4c2-4ab-4ac-4bc
=>2a2+2b2+2c2-2ab-2ac-2bc-4a2-4b2-4c2+4ab+4bc+4ac=0
=>-2a2-2b2-2c2+2ab+2ac+2bc=0
=>-(2a2+2b2+2c2-2ab-2ac-2bc)=0
=>-[(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ac+c2)]=0
=>-[(a-b)2+(b-c)2+(a-c)2]=0
=>(a-b)2+(b-c)2+(a-c)2=0
=>(a-b)=(b-c)=(a-c)=0
=>a-b=0 =>a=b (1)
b-c=0 =>b=c (2)
từ (1) và (2)
=>a=b=c (đpcm)
a: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+b^2d^2+2bacd+a^2d^2+b^2c^2-2bacd\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
b: \(\Leftrightarrow2a^2+2b^2+2c^2=2ba+2ac+2bc\)
=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
=>(a-b)^2+(b-c)^2+(a-c)^2=0
=>a=b=c
(a-b)2+(b-c)2+(c-a)2=4*(a2+b2+c2-ab-ac-bc) (*)
<=> a2-2ab + b2+ b2-2bc+c2+c2-2ac+a2= 4*(a2+b2+c2-ab-ac-bc)
<=>2a2+2b2+2c2-2ab-2ac-2bc = 4*(a2+b2+c2-ab-ac-bc)
<=>2*(a2+b2+c2-ab-ac-bc)=0 (nhân 2 vế cho 2)
<=>4*(a2+b2+c2-ab-ac-bc)=0
Theo (*) =>(a-b)2+(b-c)2+(c-a)2=0
=> a=b=c (đpcm)
Ta có: \(a^2 + b^2 + c^2 = ab + ac + bc \)
\(\Leftrightarrow 2a^2 + 2b^2 + 2c^2 = 2ab + 2ac + 2bc\)
\(\Leftrightarrow 2a^2 + 2b^2 + 2c^2 - 2ab -2ac - 2bc = 0\)
\(\Leftrightarrow (a^2 - 2ab +b^2) + (a^2 - 2ac + c^2) + (b^2 - 2bc +c^2) = 0\)
\(\Leftrightarrow (a - b)^2 + (a-c)^2 + (b-c)^2 = 0\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\) \(\Leftrightarrow\) \(a=b=c\)
a) => 2a^2 + 2b^2 = 2ab + 2ba
=> 2a^2 + 2b^2 - 2ab - 2ba = 0
=> (a-b)^2 + (a-b)^2 = 0
=> 2(a-b)^2 = 0
=> a-b = 0
=> a = b
b) Nhân hai vế với 2 và làm tương tự câu a)
=> (a-b)^2 + (b-c)^2 + (a-c)^2 = 0
=> a = b = c
Ta có :
\(a^2+b^2+c^2=ab+ac+bc\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+ac+bc\right)\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)
\(\Rightarrow2a^2+2b^2+2c^2-\left(2ab+2ac+2bc\right)=0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Rightarrow a^2+a^2+b^2+b^2+c^2+c^2-2ab-2ac-2bc=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\)hoặc (a - b)2=0 hoặc (b - c)2=0 hoặc (c - a)2=0 \(\Leftrightarrow\)a - b = 0 hoặc b - c = 0 hoặc c - a = 0\(\Leftrightarrow\)a = b; b = c; c = a (1)
Từ (1)
\(\Rightarrow\)a = b = c
nói hoặc là sai rồi vì 3 trường hợp này xảy ra trong 1 đẳng thức
a2+b2+c2=ab+bc+ac
\(\Rightarrow\) 2a2+2b2+2c2=2ab+2bc+2ac
\(\Leftrightarrow\)2a2+2b2+2c2-2ab-2bc-2ac=0
\(\Leftrightarrow\)(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ac+c2)=0
\(\Leftrightarrow\)(a-b)2+(b-c)2+(a-c)2=0
\(\Leftrightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)
\(\Leftrightarrow\)a=b=c
Giỏi vc