Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.A=2+2+2^2+2^3+2^4+...+2^{99}\)
\(A=2+\left(2+2^2+2^3+2^4+...2^{99}\right)\)
\(\Rightarrow A-2=2+2^2+2^3+2^4+...+2^{99}\)
\(2.\left(A-2\right)=2^2+2^3+2^4+2^5+...+2^{100}\)
\(2.\left(A-2\right)-\left(A-2\right)=2^{100}-2=2.2^{99}\)
\(A=2.2^{99}+2\)
Câu b bạn tự giải nhé
\(A=2+2^2+2^3+2^4+......+2^{98}+2^{99}\)
\(2A=2^2+2^3+2^4+2^5+.....+2^{99}+2^{100}\)
\(\Rightarrow2A-A=A=2^{100}-2\)
\(B=1+5+5^2+5^3+........+5^{50}+5^{51}\)
\(5B=5+5^2+5^3+5^4+.....+5^{51}+5^{52}\)
\(5B-B=4B=5^{52}-1\)
\(\Rightarrow B=\frac{5^{52}-1}{4}\)
A= 22+22+23+24+..........+250
2A= 23+23+24+25+..........+251
A= 22+22+23+24+..........+250
2A - A= 23 + 251 - 22 - 22
A= 8+251-4 -4
A= 251
a) A = 251
b) A + 3 - 251=251+3-251
A = 3
\(A=4+4^2+4^3+...+4^{48}+4^{49}+4^{50}\)
\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+\left(4^5+4^6\right)+...+\left(4^{45}+4^{46}\right)+\left(4^{47}+4^{48}\right)+\left(4^{49}+4^{50}\right)\)
\(A=4\left(1+4\right)+4^3\left(1+4\right)+4^5\left(1+4\right)+...+4^{45}\left(1+4\right)+4^{47}\left(1+4\right)+4^{49}\left(1+4\right)\)
\(A=4.5+4^3.5+4^5.3+...+4^{45}.5+4^{47}.5+4^{49}.5\)
\(A=5.\left(4+4^3+4^5+...+4^{45}+4^{47}+4^{49}\right)\)\(⋮\)\(5\)
\(\Rightarrow\)\(A⋮5\)
a)Cho A =4+42+43+....+448+449+450chia hết 5
A=(4+42)+(43+44)+.....+(447+449)+(449+450)
A=20+42.(4+42)+.....+446.(4+42)+448.(4+42)
A=20+42.20+.......+446.20+448.20
Vì 20 chia hết 5 suy ra 20+42.20+....+446.20+448.20chia hết cho 5
Vậy A chia hết cho 5
n
\(A=2^0+2^1+2^2+.....+2^{1990}\)
\(2A=2\left(2^0+2^1+2^2+.....+2^{1990}\right)\)
\(2A=2^1+2^2+2^3+.....+2^{1991}\)
\(2A-A=\left(2^1+2^2+2^3+.....+2^{1991}\right)-\left(2^0+2^1+2^2+.....+2^{1990}\right)\)
\(A=2^{1991}-2^0=2^{1991}-1\)
\(B=a^0+a^1+a^2+a^3+.....+a^n\)
\(B.a=a^1+a^2+a^3+a^4+.....+a^{n+1}\)
\(B.a-B=\left(a^1+a^2+a^3+a^4+......+a^{n+1}\right)-\left(a^0+a^1+a^2+a^3+.....+a^n\right)\)
\(B.a=a^{n+1}-1\Leftrightarrow B=\dfrac{a^{n+1}-1}{a}\)
\(C=1+3+3^2+.....+3^{50}\)
\(3C=3\left(1+3+3^2+.....+3^{50}\right)\)
\(3C=3+3^2+3^3+.....+3^{51}\)
\(3C-C=\left(3+3^2+3^3+.....+3^{51}\right)-\left(1+3+3^2+.....+3^{50}\right)\)
\(2C=3^{51}-1\Rightarrow C=\dfrac{3^{51}-1}{2}\)
Ta có 2A=21+22+23+...+251
=> A= (21+22+23+...+251) - ( 20+21+22+23+...+250)
=> A= 251 - 20 < 251=B
=> A<B
a)76+75+74=74(72+7+1)=74.55
=>76+75+74 chia hết cho 55
b)A= 1+5+52+53+54+....+550
=>5A=5+52+53+54+....+551
=>5A-A=5+52+53+54+....+551-(1+5+52+53+54+....+550)
=>4A=5+52+53+54+....+551-1-5-52-53-54-...-550
=551-1
=>A=(551-1):4
1