K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TP
12 tháng 7 2017
a) Do \(1010\le n\le2016\)nên:
\(\sqrt{20203+21\times1010}\le a_n\le20203+21\times2016\)\(\Leftrightarrow204\le a_n\le250\)
b) Ta có:
\(a^2_n=20203+21n=\left(21\times962+1\right)+21n\)
\(\Leftrightarrow a^2_n-1=21\times\left(962+n\right)=3\times7\times\left(962+n\right)\)
\(\Rightarrow\left(a_n-1\right)\left(a_n+1\right)⋮7\Leftrightarrow\hept{\begin{cases}\left(a_n-1\right)⋮7\\\left(a_n+1\right)⋮7\end{cases}}\)
Hay \(a_n+1=7k\)hoặc \(a_n-1=7k\)\(\Rightarrow a_n=7k-1\)hoặc \(a_n=7k+1\left(k\in N\right)\)
\(\Rightarrow dpcm\)
\(a_n=\frac{1}{\sqrt{n}\sqrt{n+1}\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
\(S_{2005}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{1+1}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2+1}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3+1}}+...+\)
\(\frac{1}{\sqrt{2005}}-\frac{1}{\sqrt{2005+1}}\)
\(S_{2005}=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{2005}}-\frac{1}{\sqrt{2006}}\)
\(S_{2005}=1-\frac{1}{\sqrt{2006}}\)
PS : ko chắc :v
mem nào k sai chỉ hộ t cái :v