K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2017

Ta có :

\(\frac{a1}{a2}=\frac{a2}{a3}=\frac{a3}{a4}=...=\frac{a2016}{a2017}=\frac{a1+a2+a3+...+a2016}{a2+a3+a4+...+a2017}\)

vì \(\frac{a1}{a2}=\frac{a1+a2+a3+...+a2016}{a2+a3+a4+...+a2017}\) 

\(\frac{a2}{a3}=\frac{a1+a2+a3+...+a2016}{a2+a3+a4+...+a2017}\)

...

\(\frac{a2016}{a2017}=\frac{a1+a2+a3+...+a2016}{a2+a3+a4+...+a2017}\)
\(\Rightarrow\frac{a1}{a2}.\frac{a2}{a3}.\frac{a3}{a4}...\frac{a2016}{a2017}=\frac{\left(a1+a2+a3+...+a2016\right)^{2016}}{\left(a2+a3+a4+...+a2017\right)^{2016}}\)

\(\Rightarrow\frac{a1}{a2017}=\left(\frac{a1+a2+a3+...+a2016}{a2+a3+a4+...+a2017}\right)^{2016}\)

24 tháng 11 2017

Ta có a1/a2=a2/a3=a3/a4=...=a2016/a2017

=> a1/a2=(a1+a2+a3+...+a2016)

/(a2+a3+a4+...+a2017)

=> a12016/a22016 =(a1+a2+a3+...+a2016)2016 /(a2+a3+a4+...+a2017)2016 (1)

Ta lại có a1/a2=a2/a3=a3/a4=...=a2016/a2017

=> a12016/a22016= a1/a2.a2/a3.a3/a4. ... .a2016/a2017=a1/a2017 (2)

Từ (1) và (2) => đpcm

27 tháng 3 2018

Ta có:

\(\frac{a_1}{a_2}=\frac{a_2}{a_3};\frac{a_2}{a_3}=\frac{a_3}{a_4};...;\frac{a_{2015}}{a_{2016}}=\frac{a_{2016}}{a_{2017}}\)

\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2016}}{a_{2017}}=k\)

\(\Rightarrow\frac{a_1^{2016}}{a_2^{2016}}=\frac{a_2^{2016}}{a_3^{2016}}=...=\frac{a_{2016}^{2016}}{a_{2017}^{2016}}=\frac{a_1^{2016}+a_2^{2016}+...+a_{2016}^{2016}}{a_2^{2016}+a_3^{2016}+...+a_{2017}^{2016}}=k^{2016}\left(1\right)\)

Ta lại có: 

\(k^{2016}=\frac{a_1}{a_2}.\frac{a_2}{a_3}...\frac{a_{2016}}{a_{2017}}=\frac{a_1}{a_{2017}}\left(2\right)\)

Từ (1) và (2) \(\frac{a_1^{2016}+a_2^{2016}+...+a_{2016}^{2016}}{a_2^{2016}+a_3^{2016}+...+a_{2017}^{2016}}=\frac{a_1}{a_{2017}}\)

16 tháng 6 2017

Ta có:

f ( 1 ) = \(a_0+a_1+....+a_{2017}\)

mà f ( x) = \(\left(x+2\right)^{2017}\)

=> \(S=f\left(1\right)=3^{2017}\)

18 tháng 6 2017

Hiếu , tớ hỏi này tại sao lại là f(-1) hả ?

31 tháng 10 2015

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=....=\frac{a_{2015}}{a_{2016}}=\frac{a_1+a_2+...+a_{2015}}{a_2+a_3+...+a_{2016}}\)

=> \(\left(\frac{a_1+a_2+....+a_{2015}}{a_2+a_3+....+a_{2016}}\right)^{2015}=\frac{a_1.a_2.....a_{2015}}{a_2.a_3......a_{2016}}=\frac{a_1}{a_{2016}}\)

=> \(\left(\frac{a_1+a_2+....+a_{2015}}{a_2+a_3+....+a_{2016}}\right)^{2015}=\frac{a_1}{a_{2016}}\)(Đpcm)

24 tháng 1 2020

Câu hỏi của Nguyễn Minh Vũ - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo ở link trên.

19 tháng 8 2016

ko hiểu

24 tháng 1 2020

\(f\left(x\right)=\left(x+2\right)^{2017}\Rightarrow f\left(1\right)=3^{2017}\)

hay \(a_{2017}+a_{2016}+...+a_2+a_1+a_0=3^{2017}\)(1)

và \(f\left(x\right)=\left(x+2\right)^{2017}\Rightarrow f\left(-1\right)=1^{2017}=1\)

hay \(-a_{2017}+a_{2016}+...+a_2-a_1+a_0=1\)(2)

Lấy (1) + (2), ta được:

\(2S=3^{2017}+1\)

\(\Rightarrow S=\frac{3^{2017}+1}{2}\)

Vậy \(S=a_0+a_2+a_4+...+a_{2014}+a_{2016}=\frac{3^{2017}+1}{2}\)

31 tháng 1 2017

Giá trị biểu thức:-5

Bài này mk làm rồi nhấn đi đảm bảo đúngvui

Cảm ơn bạn rất nhìu nhưng những bài này mik đã bik làm từ lâu rồi nhưng chỉ kk chắc lém thui

26 tháng 8 2017

Theo đề ta có :

* \(a_2^2=a_1.a_3\) \(\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}\) (1)

* \(a_3^2=a_2.a_4\Rightarrow\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\left(2\right)\)

* \(a_4^2=a_3.a_5\Rightarrow\dfrac{a_3}{a_4}=\dfrac{a_4}{a_5}\left(3\right)\)

* \(a^2_5=a_4.a_6\Rightarrow\dfrac{a_4}{a_5}=\dfrac{a_5}{a_6}\left(4\right)\)

Từ (1) ; (2) ; (3) và (4) nên ta có :

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=\dfrac{a_4}{a_5}=\dfrac{a_5}{a_6}\)

\(=\dfrac{a_1+a_2+a_3+a_4+a_5}{a_2+a_3+a_4+a_5+a_6}\) (5)

\(=\dfrac{a_1.a_2.a_3.a_4.a_5}{a_2.a_3.a_4.a_5.a_6}=\dfrac{a_1}{a_6}\) (6)

Từ (5) và (6) , ta có :

\(\dfrac{a_1+a_2+a_3+a_4+a_5}{a_2+a_3+a_4+a_5+a_6}=\dfrac{a_1}{a_6}\)

Áp dụng 2 phân số bằng nhau , ta có :

\(\left(a_1+a_2+a_3+a_4+a_5\right)a_6=\left(a_2+a_3+a_4+a_5+a_6\right)a_1\)

\(\left(đpcm\right)\)

31 tháng 8 2017

cảm ơn bạn nhiều