K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2018

GIả sử trong 50 số không có 2 số nào bằng nhau. Cho a1>a2>a3>....>a50, do a1,a2,...,a50 là các số tự nhiên

\(\Rightarrow a_{50}\ge1,a_{49}\ge2,...,a_1\ge50.\)

\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{50}}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\)

\(\Leftrightarrow VT\le\left(1+\frac{1}{2}+...+\frac{1}{10}\right)+\left(\frac{1}{11}+...+\frac{1}{20}\right)\)\(+\left(\frac{1}{21}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+...+\frac{1}{40}\right)\)

\(+\left(\frac{1}{41}+...+\frac{1}{50}\right)\) (mỗi nhóm có 10 số hạng)

\(VT< 10+\frac{10}{11}+\frac{10}{21}+\frac{10}{31}+\frac{10}{41}< 10+1+\frac{1}{2}\)\(+\frac{1}{3}+\frac{1}{4}=\frac{145}{12}< \frac{51}{2}\)

=> Vô lí

=> đpcm

3 tháng 5 2018

Giả sử \(a_1;a_2;a_3;a_4;........;a_{50}\) là 50 số tự nhân khác nhau và \(0< a_1< a_2< a_3< ........< a_{50}\)

\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+\frac{1}{a_4}+.....+\frac{1}{a_{50}}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{50}\)

\(< 1+\frac{1}{2}+\frac{1}{2}+....+\frac{1}{2}=1+\frac{49}{2}=\frac{51}{2}\) (mâu thuẫn giả thiết)

\(\Rightarrow\)Trong 50 số trên có ít nhất 2 số bằng nhau

9 tháng 5 2018

Giả sử trong 2018 số này không tồn tại 2 số nào bằng nhau.

Giả sử \(a_1>a_2>...>a_{2018}\)

\(\Rightarrow a_{2018}\ge2,a_{2017}\ge3,...,a_1\ge2019\)

\(\Rightarrow\frac{1}{a_1^2}+\frac{1}{a_2^2}+...+\frac{1}{a_{2018}^2}\le\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}\)\(< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2018.2019}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}< 1\)(mâu thuẫn với giả thiết)

=> điều giả sử không xảy ra=>đpcm

6 tháng 5 2019

Giả sử trong 2018 số đó chẳng có số nào bằng nhau và tất cả các số đều lớn hơn 1. Thế thì:

1a21+1a22+1a23+…+1a220181a12+1a22+1a32+…+1a20182≤122+132+142+…+120192≤122+132+142+…+120192

Cơ mà:

122+132+142+…+120192122+132+142+…+120192<11.2+12.3+13.4+…+12018.2019<11.2+12.3+13.4+…+12018.2019

=1–12019<1=1–12019<1 (theo phần a)

Thế nhưng đề bài cho 1a21+1a22+1a23+…+1a22018=11a12+1a22+1a32+…+1a20182=1 (vô lý)

Vậy thể nào trong 2018 số tự nhiên đó cũng có 2 số bằng nhau

7 tháng 3 2016

dat A=a1+a2+...+a2003\(\Rightarrow\)A=(a1+a2)+...+(a2001+a2002)+a2003\(\Leftrightarrow\)A=1+1+1+...+1+a2003=0

A=1*1001+a2003=1001+a2003=0

\(\Leftrightarrow\)a2003=-1001

Mà a1+a2003=1\(\Rightarrow\)a1=1-(-1001)=1002

Vậy a1=1002 ; a2003=-1001

12 tháng 3 2020

cho mình hỏi tại sao a1+a2 lại =1

28 tháng 12 2014

Ta có:

a1+a2+...+a2002+a2003=(a1+a2)+...+(a2001+a2002)+a2003=0

=1 + 1+...+ 1+a2003(có 1001 số 1)=0

=1001+a2003=0

=>a2003=0-1001

=>a2003= -1001

Ta có:

a2003+a1=1

=>-1001+a1=1

=>a1=1-(-1001)

=>a1=1002

(nếu thấy hay thì like cho mình nhé)

1 tháng 1 2017

1002 nha bạn

Chúc các bạn học giỏi 

Nha