Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
điều kiện \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
a) A= (\(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1}\)\(+\frac{\sqrt{x}}{x-1}\)) : \(\frac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\frac{2-x}{x\left(1+\sqrt{x}\right)}\))
=\(\frac{x+2\sqrt{x}}{x-1}:\frac{x+2\sqrt{x}}{x\left(1+\sqrt{x}\right)}\)=\(\frac{x\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{x}{\sqrt{x}-1}\)
b) A<1 <=> \(\frac{x}{\sqrt{x}-1}< 1< =>\frac{x-\sqrt{x}+1}{\sqrt{x}-1}< 0\)<=> \(\frac{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}}{\sqrt{x}-1}< 0\)<=> \(\sqrt{x}-1< 0< =>x< 1\)kết hợp với điều kiện x>0 ta được 0<x<1
c) Min \(\sqrt{A}\)
Điều kiện A \(\ge0< =>\frac{x}{\sqrt{x}-1}\ge0< =>\hept{\begin{cases}x\ge0\\\sqrt{x}-1>0\end{cases}}< =>x>1;\)
(\(\sqrt{x}-2\))2 = x-4\(\sqrt{x}+4\)\(\ge0\)<=>x\(\ge4\left(\sqrt{x}-1\right)\) <=> \(\frac{x}{\sqrt{x}-1}\ge4\) (vì \(\sqrt{x}-1>0\))
hay A \(\ge4=>\sqrt{A}\ge2\)
\(\sqrt{A}=2\) khi \(\sqrt{x}-2=0< =>x=4\)
a. ĐKXĐ \(x\ge0\)và \(x\ne9\)
Ta có \(K=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(x-2\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)
b. Để \(K< -1\Rightarrow\frac{3\sqrt{x}-9+\sqrt{x}+3}{\sqrt{x}+3}< 0\Rightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\Rightarrow4\sqrt{x}-6< 0\)vì \(\sqrt{x}+3\ge3\)
\(\Rightarrow0\le x< \frac{9}{4}\left(tm\right)\)
Vậy với \(0\le x< \frac{9}{4}\)thì K<-1
c. \(K=\frac{3\sqrt{x}-9}{\sqrt{x}+3}=3+\frac{-18}{\sqrt{x}+3}\)
Ta có \(\sqrt{x}+3\ge3\Rightarrow\frac{1}{\sqrt{x}+3}\le\frac{1}{3}\Rightarrow-\frac{18}{\sqrt{x}+3}\ge-6\Rightarrow3+\frac{-18}{\sqrt{x}+3}\ge-3\)
\(\Rightarrow K\ge-3\)
Vậy \(MinK=-3\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)
\(\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-\sqrt{x}}\right):\frac{1}{\sqrt{x}-1}\)
ĐKXĐ : x khác 1 , x lớn hơn hoặc bằng 0
\(=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\frac{1}{\sqrt{x}-1}\)
\(=\left(\frac{\sqrt{x}\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\frac{1}{\sqrt{x}-1}\)
\(=\left(\frac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\frac{1}{\sqrt{x}-1}\)
\(=\frac{x+2}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{1}{\sqrt{x}-1}\)
\(=\frac{x+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\frac{\sqrt{x}-1}{1}=\frac{x+2}{\sqrt{x}}\)
b/ \(A=2=\frac{x+2}{\sqrt{x}}\)
\(\Rightarrow2\sqrt{x}=x+2\)
\(\Rightarrow x-2\sqrt{x}+2=0\)
\(\Rightarrow x-2\sqrt{x}+1+1=0\)
\(\Rightarrow\left(\sqrt{x}-1\right)^2+1=0\)
\(\Rightarrow\left(\sqrt{x}-1\right)^2=-1\)
mà\(\left(\sqrt{x}-1\right)^2\ge0\)(ko thỏa mãn)
P/s ko bik phải làm sai ko mà tính ko ra @*@ bạn xem sai chỗ nào để mik sửa ạ