K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2018

a) Điều kiện xác định : \(a>0\)\(a\ne1\)

b) Ta có : 

\(A=\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{\sqrt{a}+1}{a}=\left(\frac{\sqrt{a}.\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{\sqrt{a}.\left(\sqrt{a}+1\right)}\right).\frac{a}{\sqrt{a}+1}\)

\(=\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right).\frac{a}{\sqrt{a}+1}=\frac{a-1}{\sqrt{a}}.\frac{a}{\sqrt{a}+1}=\frac{a.\left(\sqrt{a}-1\right).\left(\sqrt{a}+1\right)}{\sqrt{a}.\left(\sqrt{a}+1\right)}\)

\(=\sqrt{a}.\left(\sqrt{a}-1\right)=a-\sqrt{a}\)

c)

Ta có :  \(A=a-\sqrt{a}=\left(a-2.\frac{1}{2}.\sqrt{a}+\frac{1}{4}\right)-\frac{1}{4}=\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\)

Vì \(a>0\)và  \(a\ne1\)nên \(\left(\sqrt{a}-\frac{1}{2}\right)^2\ge0\)

\(\Rightarrow\)  \(A=\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Vậy \(Min_A=-\frac{1}{4}\) khi và chỉ khi \(\sqrt{a}-\frac{1}{2}=0\Rightarrow\sqrt{a}=\frac{1}{2}\Rightarrow a=\frac{1}{4}\)

19 tháng 8 2018

a) ĐKXĐ: \(a\ne1;a\ne0\))

\(A=\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{\sqrt{a+1}}{a}\)

    \(=\left(\frac{\sqrt{a}.\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{\sqrt{a}.\left(\sqrt{a}+1\right)}\right):\frac{\sqrt{a+1}}{a}\)

      \(=\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right):\frac{\sqrt{a+1}}{a}\)

      \(=\frac{a-1}{\sqrt{a}}.\frac{a}{\sqrt{a+1}}=\frac{\sqrt{a}\left(a-1\right)}{\sqrt{a+1}}\)

8 tháng 8 2020

Bài làm:

a) đkxđ: \(a\ne1;a>0\)

b) Ta có: 

\(A=\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{a+\sqrt{a}}\right)\div\frac{\sqrt{a}+1}{a}\)

\(A=\left[\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right].\frac{a}{\sqrt{a}+1}\)

\(A=\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right).\frac{a}{\sqrt{a}+1}\)

\(A=\frac{a-1}{\sqrt{a}}.\frac{a}{\sqrt{a}+1}\)

\(A=\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}.\frac{a}{\sqrt{a}+1}\)

\(A=\left(\sqrt{a}-1\right)\sqrt{a}\)

\(A=a-\sqrt{a}\)

13 tháng 5 2021

1,

\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)

\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)

\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)

\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)

Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)

14 tháng 5 2021

2, 

a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)

b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)

\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)

\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)

c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)

Bài 2: 

\(\Leftrightarrow3\sqrt{x+5}-2\sqrt{x+5}=7\)

\(\Leftrightarrow\sqrt{x+5}=7\)

=>x+5=25

hay x=18

4 tháng 7 2017

\(a,ĐKXĐ:\hept{\begin{cases}a>0\\a\ne1\end{cases}}\)

\(b,A=\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)\left(\frac{a-\sqrt{a}}{\sqrt{a}+1}-\frac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)

\(=\frac{a-1}{2\sqrt{a}}.\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}+1}-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}-1}\right)\)

\(=\frac{a-1}{2\sqrt{a}}.\frac{\sqrt{a}.\left(\sqrt{a}-1\right)^2-\sqrt{a}\left(\sqrt{a}+1\right)^2}{a-1}\)

\(=\frac{\sqrt{a}\left(\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2\right)}{2\sqrt{a}}\)

\(=\frac{\sqrt{a}.\left(\sqrt{a}-1-\sqrt{a}-1\right).\left(\sqrt{a}-1+\sqrt{a}+1\right)}{2\sqrt{a}}\)

\(=\frac{\sqrt{a}.\left(-2\right).2\sqrt{a}}{2\sqrt{a}}\)

\(=-2\sqrt{a}\)

\(c,\)Để A= -4 thì 

\(-2\sqrt{a}=-4\Leftrightarrow\sqrt{a}=2\Leftrightarrow a=4\)

Kết bạn với mình nha ....