\(\left(10^n+10^{n-1}+...+10+1\right)\left(10^{n+1}+5\right)+1\)

cmr A là s...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2018

Đặt B = \(10^n+10^{n-1}+.........+10+1\)

=> 10B = \(10^{n+1}+10^n+........+10^2+10\)

=> 10B - B = \(10^{n+1}-1\)

Ta có 9A=9B.(\(10^{n+1}+5\)) + 9 = (\(10^{n+1}-1\)).(\(10^{n+1}+5\)) +9

9A = (\(\left(10^{n+1}\right)^2+5.10^{n+1}-10^{n+1}-5+9\) = \(\left(10^{n+1}\right)^2+4.10^{n+1}+4\) = \(\left(10^{n+1}+2\right)^2\)

=> A = \(\left(\dfrac{10^{n+1}+2}{3}\right)^2\)

Vì ( \(10^{n+1}+2\)) chia hết cho 3 nên \(\left(\dfrac{10^{n+1}+2}{3}\right)^2\)là số chính phương

=> A là số chính phương

1 tháng 9 2019

Ở câu a ko có chữ " b " nhé

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:
Xét:

$M=1+10+....+10^n$

$10M=10+10^2+....+10^{n+1}$
$10M-M=10^{n+1}-1$

$M=\frac{10^{n+1}-1}{9}$

$A=M.(10^{n+1}+5)+1=\frac{(10^{n+1}-1)(10^{n+1}+5)}{9}+1$

$=\frac{10^{2n+2}+4.10^{n+1}-5+9}{9}$

$=\frac{10^{2n+2}+4.10^{n+1}+4}{9}$

$=\frac{(10^{n+1}+2)^2}{9}$

$=\left(\frac{10^{n+1}+2}{3}\right)^2$
Ta thấy: $10^{n+1}+2\equiv 1^{n+1}+2=3\equiv 0\pmod 3$

Do đó: $\frac{10^{n+1}+2}{3}\in\mathbb{N}$

Suy ra $A$ là scp.