K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2017

a)   Xét A = 0

\(\Leftrightarrow\frac{X-2}{3X+2}=0\)

\(\Leftrightarrow X-2=0\)

\(\Leftrightarrow X=2\)

b)  Xét A < 0

\(\Leftrightarrow\frac{X-2}{3X+2}=0\)

\(\Leftrightarrow\orbr{\begin{cases}X-2< 0\\3X+2< 0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}X< 1\\X< -1\end{cases}}\)

29 tháng 6 2016

a) A = 0 khi x = 2

b) A<0 khi -2/3 < x < 2.

29 tháng 6 2016

Ghi lời giải rõ ràng mik mới k

\(A=\frac{x-2}{3x-2}=0\)

\(=>x-2=0=>x=2\)

b) \(\frac{x-2}{3x-2}< 0\)

Th1 : \(=>\hept{\begin{cases}x-2< 0\\3x-2>0\end{cases}=>\hept{\begin{cases}x< 2\\x>\frac{2}{3}\end{cases}}}\)

TH2 : \(=>\hept{\begin{cases}x-2>0\\3x-2< 0\end{cases}=>\hept{\begin{cases}x>2\\x< \frac{2}{3}\end{cases}}}\)

Ủng hộ na

2 tháng 7 2016

a) Để A = 0                                 ( Điều kiện \(3x+2\ne0;x\ne\frac{-2}{3}\) )

\(\Rightarrow\frac{x-2}{3x+2}=0\)

\(\Rightarrow x-2=0\)

\(\Rightarrow x=2\)

Vậy khi x = 2 thì giá trị của A = 2

b) Ta có: \(A< 0\Rightarrow\frac{x-2}{3x+2}< 0\)

\(\Rightarrow\hept{\begin{cases}x-2>0\\3x+2< 0\end{cases}}\)   hoặc      \(\hept{\begin{cases}x-2< 0\\3x+2>0\end{cases}}\)

\(\Rightarrow\frac{x>2}{x< \frac{-2}{3}}\)( loại)             hoặc \(\hept{\begin{cases}x< 2\\x>\frac{-2}{3}\end{cases}}\)

\(\Rightarrow\frac{-2}{3}< x< 2\)

Vậy \(\frac{-2}{3}< x< 2\)

5 tháng 11 2016

a) \(\left(x-\frac{1}{3}\right)\left(5x+2\right)>0\)

<=> \(\left[\begin{array}{nghiempt}x-\frac{1}{3}>0\\5x+3< 0\end{array}\right.\) hoặc \(\left[\begin{array}{nghiempt}x-\frac{1}{3}< 0\\5x+3>0\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}x>\frac{1}{3}\\5x< 3\end{array}\right.\) hoặc \(\left[\begin{array}{nghiempt}x< \frac{1}{3}\\5x>3\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}x>\frac{1}{3}\\x< \frac{3}{5}\end{array}\right.\) hoặc \(\left[\begin{array}{nghiempt}x< \frac{1}{3}\\x>\frac{3}{5}\end{array}\right.\)

Vậy...

5 tháng 11 2016

a) \(\left(x-\frac{1}{3}\right)\left(5x+2\right)>0\)

\(\Leftrightarrow\begin{cases}x-\frac{1}{3}>0\\5x+2>0\end{cases}\) hoặc \(\begin{cases}x-\frac{1}{3}< 0\\5x+2< 0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>\frac{1}{3}\\x>-\frac{2}{5}\end{cases}\) hoặc \(\begin{cases}x< \frac{1}{3}\\x< -\frac{2}{5}\end{cases}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x>\frac{1}{3}\\x< -\frac{2}{5}\end{array}\right.\)

b) \(\left(5x+3\right)\left(3x-2\right)< 0\)

\(\Leftrightarrow\begin{cases}5x+3>0\\3x-2< 0\end{cases}\) hoặc \(\begin{cases}5x+3< 0\\3x-2>0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>-\frac{3}{5}\\x< \frac{2}{3}\end{cases}\) hoặc \(\begin{cases}x< -\frac{3}{5}\\x>\frac{2}{5}\end{cases}\) (loại)

\(\Leftrightarrow-\frac{3}{5}< x< \frac{2}{3}\)

 

12 tháng 9 2016

a, để A=0 thì \(\frac{x-2}{3x+2}=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

b, để A< 0 thì \(\frac{x-2}{3x+2}< 0\Leftrightarrow x-2< 3x+2\Leftrightarrow-2-2< 3x-x\Leftrightarrow-4< 2x\Leftrightarrow-2< x\Leftrightarrow x>-2\)
 

5 tháng 9 2016

a, Để A = 0 thì x = 0 hoặc \(\left(x-\frac{1}{2}\right)\)= 0   => x = 0 hoặc x = 0,5

b, Để A > 0 thì x > 0 và \(\left(x-\frac{1}{2}\right)\)> 0   hoặc   x < 0 và  \(\left(x-\frac{1}{2}\right)\)< 0

=> x > 0 và x > 0,5 hoặc x < 0 và x < 0,5

c,a, Để A < 0 thì x > 0 và \(\left(x-\frac{1}{2}\right)\)< 0   hoặc x < 0 và \(\left(x-\frac{1}{2}\right)\)> 0  mà x > \(\left(x-\frac{1}{2}\right)\) => x > 0 và x < 0,5

23 tháng 5 2016

2.P=\(\frac{3-a}{a+10}\)

a, để P>0 

TH1 3-a>0 và a+10 >0

=> a<3 và a> -10

=> -10<a<3

TH2 3-a<0 và a+10<0

=> a>3 và a<-10(vô lý)

Vậy để P>0 thì -10<a<3

b.để P<0

TH1 3-a<0 và a+10>0

        a>3 và a>-10 

         Vậy a>3

TH2 3-a>0 và a+10<0

   => a<3 và a<-10

Vậy a<-10

vậy để P<0 thì a >3 hoặc a<-10

23 tháng 5 2016

bài 3.

a.\(\frac{7}{3}\)<x<\(\frac{17}{2}\)=>\(\frac{14}{6}\)<x<\(\frac{51}{6}\)

Vậy x=\(\left\{\frac{15}{6};\frac{16}{6};\frac{17}{6};..........;\frac{50}{6}\right\}\)

b.\(\frac{-3}{2}\)<y<2=>\(\frac{-3}{2}\)<y<\(\frac{4}{2}\)

Vậy y=\(\left\{\frac{-2}{2};\frac{-1}{2};\frac{0}{2};\frac{1}{2};\frac{2}{2};\frac{3}{2}\right\}\)

c.\(\frac{-17}{3}\)<z<\(\frac{-3}{2}\)=>\(\frac{-34}{6}\)<z<\(\frac{-9}{6}\)

Vậy z=\(\left\{\frac{-33}{6};\frac{-32}{6};\frac{-31}{6};.........\frac{-10}{6}\right\}\)