Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A có giá trị nguyên
thì 3\(⋮\)(x-1)
mà xeZ nên x-1eZ
x-1e{3;-3}
xe{4;-2}
b)\(\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}=1+\frac{7}{n-5}\)
=> n-5 thuộc Ư(7)
n-5 | 1 | -1 | 7 | -7 |
n | 6 | 4 | 12 | -2 |
a. \(C=\frac{2x-1}{x+2}=\frac{2x+4-5}{x+2}=2-\frac{5}{x+2}\)
Vì C thuộc Z nên 5 / x + 2 thuộc Z
=> x + 2 thuộc { - 5 ; - 1 ; 1 ; 5 }
=> x thuộc { - 7 ; - 3 ; - 1 ; 3 } ( tm x thuộc Z )
c. \(D=\frac{x^2-2x+1}{x+1}=\frac{x\left(x+1\right)-3x+1}{x+1}=x-\frac{3x+3-2}{x+1}=x-3-\frac{2}{x+1}\)
Vì D thuộc Z nên 2 / x + 1 thuộc Z và x thuộc Z
=> x + 1 thuộc { - 2 ; - 1 ; 1 ; 2 }
=> x thuộc { - 3 ; - 2 ; 0 ; 1 } ( tm x thuộc Z )
c. Để C và D cũng nguyên bới một giá trị x thì x = - 3
a. Vì A thuộc Z
\(\Rightarrow x-2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-3;1;3;7\right\}\)( tm x thuộc Z )
b. Ta có : \(B=\frac{x+2}{x-3}=\frac{x-3+5}{x-3}=1+\frac{5}{x-3}\)
Vì B thuộc Z nên 5 / x - 3 thuộc Z
\(\Rightarrow x-3\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-2;2;4;8\right\}\)( tm x thuộc Z )
c. Ta có : \(C=\frac{x^2-x}{x+1}=\frac{x^2+x-2x+2-2}{x+1}=\frac{x\left(x+1\right)-2x+2-2}{x+1}\)
\(=x-2-\frac{2}{x+1}\)
Vi C thuộc Z nên 2 / x + 1 thuộc Z
\(\Rightarrow x+1\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow x\in\left\{-3;-2;0;1\right\}\) ( tm x thuộc Z )
a)Để A là số nguyên thì x-2 chia hết cho x+1
Do đó ta có:
\(A=\frac{x-2}{x+1}=\frac{x+1+-3}{x+1}=1+\frac{-3}{x+1}\)
\(\Rightarrow x+1\inƯ\left(-3\right)\)
Vậy Ư(-3)là:[1,-1,3,-3]
Ta có bảng sau:
x+1 | -3 | -1 | 1 | 3 |
x | -4 | -2 | 0 | 2 |
Vậy x=-4;-2;0;2
b)Để B là số nguyên thì x+4 chia hết cho x-1
Do đó ta có:
\(A=\frac{x+4}{x-1}=\frac{x-1+5}{x-1}=1+\frac{5}{x-1}\)
\(\Rightarrow x-1\inƯ\left(5\right)\)
Vậy Ư(5)là:[1,-1,5,-5]
Ta có bảng sau:
x-1 | -5 | -1 | 1 | 5 |
x | -4 | 0 | 2 | 6 |
Vậy x=-4;0;2;6
c) Để \(\frac{2x+7}{x+2}\) là số nguyên
\(\Leftrightarrow2x+7⋮x+2\)
\(\Rightarrow\left(2x+4\right)+3⋮x+2\)
\(\Rightarrow2\left(x+2\right)+3⋮x+2\)
\(\Rightarrow\begin{cases}2\left(x+2\right)⋮x+2\\3⋮x+2\end{cases}\)
\(\Rightarrow x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Ta có bảng sau :
x+2 | -3 | -1 | 1 | 3 |
x | -5 | -3 | -1 | 1 |
Vậy \(x\in\left\{-3;-1;1;3\right\}\)
d) Để \(\frac{2x+9}{x+1}\) là số nguyên
\(\Leftrightarrow2x+9⋮x+1\)
\(\Rightarrow\left(2x+2\right)+7⋮x+1\)
\(\Rightarrow2\left(x+1\right)+7⋮x+1\)
\(\Rightarrow\begin{cases}2\left(x+1\right)⋮x+1\\7⋮x+1\end{cases}\)
\(\Rightarrow x+1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng sau :
x+1 | -7 | -1 | 1 | 7 |
x | -8 | -2 | 0 | 6 |
Vậy \(x\in\left\{-8;-2;0;6\right\}\)
Để A là 1 số nguyên thì : (2x+1) chia hết cho (x-1)
=> (x-1)+(x+2) chia hết cho (x-1)
=> (x+2) chia hết cho (x-1)
=> (x-1)+3 chia hết ho (x-1)
=> 3 chia hết cho (x-1)
=> (x-1) = {1; -1; 3; -3}
=> \(\hept{\begin{cases}x-1=1\\x-1=-1\\x-1=3\end{cases}}\)
X-1= -3
=>\(\hept{\begin{cases}x=2\\x=0\\x=4\end{cases}}\)
X=-2