Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bai nay de thui
nhung bay gio mk ban
luc nao ranh mk lam
cho nha
minhpham@gmail.com
A = 1 / 1008 + 1 / 2013 - 1 / 2016 x 2017
A = 1 / 1008 + 1 / 2013 - 1 / 2016 x 1 / 2017
B = 1 / 2014 + 1 / 2016 + 1 / 2017 + 1 / 2014 x 2016
B = 1 / 2014 + 1 / 2016 + 1 / 2017 + 1 / 2014 x 1 / 2016
\(A=\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+........+\frac{1}{100.104}\)
\(=\frac{1}{4}.\left(\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+.......+\frac{4}{100.104}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+.......+\frac{1}{100}-\frac{1}{104}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{5}-\frac{1}{104}\right)\)
\(=\frac{1}{4}.\frac{99}{520}=\frac{99}{2080}\)
Gọi \(A=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{22.25}\)
\(\Leftrightarrow\)\(3A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{22.25}\)
\(\Leftrightarrow\)\(3A=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{22}-\frac{1}{25}\)
\(\Leftrightarrow\)\(3A=1-\frac{1}{25}\)
\(\Leftrightarrow\)\(3A=\frac{24}{25}\)
\(\Leftrightarrow\)\(A=\frac{24}{25}:3\)
\(\Leftrightarrow\)\(A=\frac{24}{25}.\frac{1}{3}\)
\(\Leftrightarrow\)\(A=\frac{8}{25}\)
Vậy \(A=\frac{8}{25}\)
Đặt \(C=\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{22.25}\)
\(\Rightarrow3C=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{22.25}\)
\(\Rightarrow3C=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{22}-\frac{1}{25}\)
\(\Rightarrow3C=1-\frac{1}{25}=\frac{24}{25}\)
\(\Rightarrow C=\frac{24}{25}:3=\frac{8}{25}\)
Vậy \(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{22.25}=\frac{8}{24}\)
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{2017.2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-..........-\frac{1}{2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2018}{2018}-\frac{1}{2018}=\frac{2017}{2018}\)
b) \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+..........+\frac{2}{2017.2018}+\frac{2}{2018.2019}\)
\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{2017.2018}+\frac{1}{2018.2019}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.........-\frac{1}{2018}+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(=2\left(1-\frac{1}{2019}\right)\)
\(=2\left(\frac{2019}{2019}-\frac{1}{2019}\right)\)
\(=2.\frac{2018}{2019}\)
\(=\frac{4036}{2019}\)
Phần c tương tự nha
a) \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + .......+ \(\frac{1}{2017.2018}\)
= 1 - \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) + .......+ \(\frac{1}{2017}\) - \(\frac{1}{2018}\)
= 1 - \(\frac{1}{2018}\) = \(\frac{2017}{2018}\)
câu a) mik sửa đề một tí ko biết có đúng ko
câu b , c tương tự nhưng cần lấy tử ra chung
\(a,\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2017\cdot2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2017}{2018}.\)
\(b,\left[x\cdot\frac{5}{3}-1\right]:9=3\frac{1}{2}:2,25\)
\(\Leftrightarrow\left[x\cdot\frac{5}{3}-1\right]:9=\frac{7}{2}:\frac{9}{4}\)
\(\Leftrightarrow\left[x\cdot\frac{5}{3}-1\right]:9=\frac{7}{2}\cdot\frac{4}{9}\)
\(\Leftrightarrow\left[x\cdot\frac{5}{3}-1\right]:9=\frac{14}{9}\)
\(\Leftrightarrow x\cdot\frac{5}{3}-1=\frac{14}{9}\cdot9\)
\(\Leftrightarrow x\cdot\frac{5}{3}-1=14\)
\(\Leftrightarrow x\cdot\frac{5}{3}=14+1\)
\(\Leftrightarrow x\cdot\frac{5}{3}=15\)
\(\Leftrightarrow x=15:\frac{5}{3}\)
\(\Leftrightarrow x=15\cdot\frac{3}{5}\)
\(\Leftrightarrow x=9.\)
a)\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=\frac{1}{1}-\frac{1}{2018}\)
\(=\frac{2017}{2018}\)
b)\(\left[x.\frac{5}{3}-1\right]:9=3\frac{1}{2}:2,25\)
\(\Leftrightarrow\left[x.\frac{5}{3}-1\right]:9=3\frac{1}{2}:\frac{9}{4}=1\frac{5}{9}\)
\(\Rightarrow x.\frac{5}{3}-1=1\frac{5}{9}.9=14\)
\(\Rightarrow x.\frac{5}{3}=14+1=15\)
\(\Rightarrow x=15:\frac{5}{3}=9\)