K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2018

Ta có công thức : 

\(\frac{a}{b}>\frac{a+c}{b+c}\)\(\left(\frac{a}{b}>1;a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(B=\frac{10^{2016}+1}{10^{2015}+1}>\frac{10^{2016}+1+9}{10^{2015}+1+9}=\frac{10^{2016}+10}{10^{2015}+10}=\frac{10\left(10^{2015}+1\right)}{10\left(10^{2014}+1\right)}=\frac{10^{2015}+1}{10^{2014}+1}=A\)

\(\Rightarrow\)\(B>A\) hay \(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

28 tháng 3 2018

\(A=\frac{10^{2015}-1}{10^{2016}^{ }-1}=\frac{10^{2015}}{10^{2016}}=\frac{1}{1},B=\frac{10^{2014}-1}{10^{2015}-1}=\frac{10^{2014}}{10^{2015}}=\frac{1}{1}A=B\Rightarrow\)

5 tháng 3 2016

A<B

100% K MHE

22 tháng 3 2016

10A=(10^2014+1).10/10^2015+1=10^2015+10/10^2015+1=10^2015+1+9/10^2015+1=1+(9/10^2015+1)                                                              10B=(10^2015+1).10/10^2016+1=10^2016+10/10^2016+1=10^2016+1+9/10^2016+1=1+(9/10^2016+1)                                                            Vì 9/10^2015+1>9/10^2016+1 nên 10A>10B .Từ đó suy ra A>B 

30 tháng 3 2016

tum lum the bn

b, 2000A = \(\frac{2000\left(2000^{2015}+1\right)}{2000^{2016}+1}\) 

                 = \(\frac{2000^{2016}+2000}{2000^{2016}+1}\)

                 = \(\frac{\left(2000^{2016}+1\right)+1999}{2000^{2016}+1}\)

                 = \(\frac{2000^{2016}+1}{2000^{2016}+1}\) + \(\frac{1999}{2000^{2016}+1}\)

                 = 1 + \(\frac{1999}{2000^{2016}+1}\)

    2000B = \(\frac{2000\left(2000^{2014}+1\right)}{2000^{2015}+1}\)

                 = \(\frac{2000^{2015}+2000}{2000^{2015}+1}\)

                 = \(\frac{\left(2000^{2015}+1\right)+1999}{2000^{2015}+1}\)

                 = \(\frac{2000^{2015}+1}{2000^{2015}+1}\) + \(\frac{1999}{2000^{2015}+1}\)

                 = 1 + \(\frac{1999}{2000^{2015}+1}\)

So sanh 

câu b tiếp 

So sánh 2000A với 2000B  

Vì \(\frac{1999}{2000^{2016}+1}\) < \(\frac{1999}{2000^{2015}+1}\)

→ 2000A< 2000B

→ A<B

 

5 tháng 8 2015

xét A ta có 

\(10A=\frac{10.\left(10^{2014}+1\right)}{10^{2015}+1}=\frac{10^{2015}+10}{10^{2015}+1}=\frac{\left(10^{2015}+1\right)+9}{10^{2015}+1}\)suy ra \(10A=1+\frac{9}{10^{2015}+1}\)

xét B ta có 

\(10B=\frac{10.\left(10^{2015}+1\right)}{10^{2016}+1}=\frac{10^{2016}+10}{10^{2016}+1}=\frac{\left(10^{2016}+1\right)+9}{10^{2016}+1}=1+\frac{9}{10^{2016}+1}\)

Vì 10A>10B suy ra A >B

 

30 tháng 3 2018

10A = 10 2015 + 1 10. 10 2014 + 1

= 10 2015 + 1 10 2015 + 10

= 10 2015 + 1 10 2015 + 1 + 9

suy ra 10A = 1 + 10 2015 + 1 9 

1 tháng 4 2018

A=10^2014+1/10^2015+1

10A=10^2015+10/10^2015+1

10A=10^2015+1+9/10^2015+1

10A=1+(9/10^2015+1)(1)

B làm tương tự (2)

Từ (1); (2)

Suy ra 10A>10B

Suy ra A>B

Vậy........

1 tháng 4 2018

Vi B < 1 nen ta co : 

 \(B=\frac{10^{2015}+1}{10^{2016}+1}< \frac{10^{2015}+1+9}{10^{2016}+1+9}\)

\(\Rightarrow B< \frac{10^{2015}+10}{10^{2016}+10}=\frac{10\left(10^{2014}+1\right)}{10\left(10^{2015}+1\right)}=A\)

Vay \(B< A\)

16 tháng 3 2018

Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(B=\frac{10^{2014}+1}{10^{2015}+1}< \frac{10^{2014}+1+9}{10^{2015}+1+9}=\frac{10^{2014}+10}{10^{2015}+10}=\frac{10\left(10^{2013}+1\right)}{10\left(10^{2014}+1\right)}=\frac{10^{2013}+1}{10^{2014}+1}=A\)

\(\Rightarrow\)\(B< A\) hay \(A>B\)

Vậy \(A>B\)

Chúc bạn học tốt ~ 

16 tháng 3 2018

áp dụng tính chất

nếu a/b>1thì a/b<(a+n)/(b+n)

=)))))))))))))))))

12 tháng 2 2018

Vì \(\frac{10^{2014}+1}{10^{2015}+1}< 1\Rightarrow B=\frac{10^{2014}+1}{10^{2015}+1}< \frac{10^{2014}+1+9}{10^{2015}+1+9}\)

\(\Rightarrow B< \frac{10^{2014}+10}{10^{2015}+10}\)

\(\Rightarrow B< \frac{10\left(10^{2013}+1\right)}{10\left(10^{2014}+1\right)}\)

\(\Rightarrow B< \frac{10^{2013}+1}{10^{2014}+1}\)

\(\Rightarrow B< A\)

Vậy A > B

12 tháng 2 2018

Các bn giúp mình vơi mình đang cần lắm 

9 tháng 5 2018

có :

\(B=\frac{10^{2015}+1}{10^{2014}+1}>1\)

\(\Rightarrow\frac{10^{2015}+1}{10^{2014}+1}>\frac{10^{2015}+1+9}{10^{2014}+1+9}\)        \(=\frac{10^{2015}+10}{10^{2014}+10}=\frac{10.\left(10^{2014}+1\right)}{10.\left(10^{2013}+1\right)}\)

\(=\frac{10^{2014}+1}{10^{2013}+1}=A\)

\(\Rightarrow B>A\)

 Vậy B > A

k cho mk nhé