K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2018

a) \(A=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(\Leftrightarrow A=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{4\left(2-x\right)+x^2\left(2-x\right)}\right)\left(\dfrac{x^2-x-2}{x^2}\right)\)

\(\Leftrightarrow A=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(2-x\right)\left(4+x^2\right)}\right)\cdot\dfrac{x^2-x-2}{x^2}\)

ĐKXĐ: \(x\ne0;x\ne2\)

\(\Leftrightarrow A=\left(\dfrac{-x\left(2-x\right)^2-4x^2}{2\left(x^2+4\right)\left(2-x\right)}\right)\cdot\dfrac{x^2-x-2}{x^2}\)

\(\Leftrightarrow A=\dfrac{-x^3-2x^2-4x}{2\left(x^2+4\right)\left(2-x\right)}\cdot\dfrac{x^2-x-2}{x^2}\)

\(\Leftrightarrow A=-\dfrac{\left(x^2+2x+4\right)\left(x+1\right)\left(x+2\right)}{2\left(x^2+4\right)\left(2-x\right)}\)

\(A=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{x^3-2x^2+4x-8}\right)\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\dfrac{\left(x^2-2x\right)\left(x-2\right)+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x^3-2x^2-2x^2+4x+4x^2}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)

\(=\dfrac{x\left(x^2+4\right)}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}=\dfrac{x+1}{2x}\)

b: \(\Leftrightarrow\dfrac{2}{\left(x+7\right)\left(x-3\right)}=\dfrac{3x+21}{\left(x-3\right)\left(x+7\right)}\)

=>3x+21=2

=>x=-19/3

d: \(\Leftrightarrow\left(2x+1\right)^2-\left(2x-1\right)^2=8\)

\(\Leftrightarrow4x^2+4x+1-4x^2+4x-1=8\)

=>8x=8

hay x=1

30 tháng 10 2022

\(A=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{x^3-2x^2+4x-8}\right)\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\left(\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\left(\dfrac{x\left(x^2-4x+4\right)+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\right)\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x\left(x^2-4x+4+4x\right)}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}=\dfrac{x\left(x^2+4\right)}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)

\(=\dfrac{x+1}{2x}\)

16 tháng 1 2018

( x22x / 2x2+8 2x2 / 84x+2x2x3 ).(11/x 2/x2 )

=[ x22x / 2(x2+4) 2x2 / 2(x2+4)x(x2+4) ]. x2x2 / x2

=[x22x / 2(x2+4) 2x2 / (2x)(x2+3)] . x2x2 / x2

=(x22x)(2x)4x2 / 2(2x)(x2+4) . x2+x2x2 / x2

= x(x2+4) / 2(2x)(x2+4). (x+1)(x2) / x2

=x+1 / 2x

a: \(M=\left(\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{x^3-2x^2+4x-8}\right)\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\left(\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\left(\dfrac{x\left(x-2\right)^2+4x^2}{2\left(x^2+4\right)\left(x-2\right)}\right)\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x^3-4x^2+4x+4x^2}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)

\(=\dfrac{x\left(x^2+4\right)}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}=\dfrac{x+1}{2x}\)

b: Thay x=1/2 vào M, ta được:

\(M=\left(\dfrac{1}{2}+1\right):\left(2\cdot\dfrac{1}{2}\right)=\dfrac{3}{2}\)

a: \(Q=\left(\dfrac{-x\left(x-2\right)}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\cdot\dfrac{2+x-x^2}{x^2}\)

\(=\dfrac{-x\left(x^2-4x+4\right)-4x^2}{2\left(x^2+4\right)\left(x-2\right)}\cdot\dfrac{-\left(x^2-x-2\right)}{x^2}\)

\(=\dfrac{-x^3+4x^2-4x-4x^2}{2\left(x^2+4\right)}\cdot\dfrac{-\left(x+1\right)}{x^2}\)

\(=\dfrac{-x\left(x^2+4\right)}{2\left(x^2+4\right)}\cdot\dfrac{-\left(x+1\right)}{x^2}=\dfrac{x+1}{x}\)

b: Để Q là số nguyên thì \(x+1⋮x\)

hay \(x=1\)