K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2017

\(A=1-\frac{1}{2^2}-...-\frac{1}{2010^2}\)

\(=1-\left(\frac{1}{2^2}+...+\frac{1}{2010^2}\right)\)

Đặt \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)

Ta có: \(A=1-\left(\frac{1}{2^2}+...+\frac{1}{2010^2}\right)\)\(>\)\(B=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\right)\)

\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\right)\)

\(=1-\left(1-\frac{1}{2010}\right)=1-1+\frac{1}{2010}=\frac{1}{2010}\)

26 tháng 1 2017

cảm ơn bn >.<!

bài bn vik thiếu nhưng mik hiểu nên vẫn tick

6 tháng 4 2017

\(A=1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2010^2}>1-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{2009.2010}\)

\(=1-\frac{1}{2}-\frac{1}{2010}=\frac{1004}{2010}>\frac{1}{2010}\Rightarrow A>\frac{1}{2010}\)

6 tháng 2 2017

A= \(1-\frac{2011}{2012}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}\)

B=\(\left(\frac{2012}{1}-1\right)+\left(\frac{2012}{2}-1\right)+...+\left(\frac{2012}{2011}-1\right)\)

= \(\frac{2012}{1}-\frac{2012}{2012}+\frac{2012}{2}-\frac{2012}{2012}+...+\frac{2012}{2011}-\frac{2012}{2012}\)

=\(2012\left(1-\frac{1}{2012}+\frac{1}{2}-\frac{1}{2012}+...+\frac{1}{2011}-\frac{1}{2012}\right)\)

\(\Rightarrow\)\(\frac{B}{A}\)=\(\frac{2012\left(1-\frac{2011}{2012}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}\right)}{1-\frac{2011}{2012}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}\)= 2012

28 tháng 6 2015

A=1-(1/2^2+1/3^2+...+1/2010^2)

A=1-(1/2*2+1/3*3+...+1/2010*2010)>1-(1/2*3+1/3*4+...+1/2010*2011)

A>1-(1/2-1/3+1/3-1/4+...+1/2010-1/2011)

A>1-(1/2-1/2011)=2013/4022>1/2010

=>A>1/2010

Sai thì em xin lỗi nhé

 

17 tháng 10 2018

\(B=\frac{2001}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{2}{2010}+\frac{1}{2001}\)

\(B=\left(2011-1-...-1\right)+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)\)

\(B=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}\)

\(B=2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)

\(\Rightarrow\)\(\frac{B}{A}=\frac{2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}}=2012\)

Vậy \(\frac{B}{A}=2012\)

Chúc bạn học tốt ~ 

17 tháng 10 2018

cảm ơn bạn

5 tháng 11 2015

Có B = \(\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+....+\frac{1}{2011}\)

B = \(\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+....+\left(\frac{1}{2011}+1\right)+1\)

B = \(\frac{2012}{2}+\frac{2012}{3}+....+\frac{2012}{2011}+\frac{2012}{2012}\)

B = \(2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)\)

=> \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)}=\frac{1}{2012}\)

13 tháng 9 2016

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2011}}{\left(\frac{2009}{2}+1\right)+\left(\frac{2008}{3}+1\right)+...+\left(\frac{1}{2010}+1\right)+1}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2011}{2}+\frac{2011}{3}+...+\frac{2011}{2010}+\frac{2011}{2011}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{2011\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}+\frac{1}{2011}\right)}\)

\(A=\frac{1}{2011}\)

 

13 tháng 9 2016

dunt