K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2016

\(n^2\left(n^4-1\right)=n^2\left(n^2+1\right)\left(n^2-1\right)=\left(n-1\right).n.\left(n+1\right).\left(n^2+1\right)\)

\(=\left(n-1\right).n.\left(n+1\right).\left(n^2-4+5\right)\)

\(=\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\left(n+2\right)+5\left(n-1\right).n.\left(n+1\right)\)

Vì \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\) là tích của 5 số tự nhiên liên tiếp nên chia hết cho 3,4,5 mà (3,4,5) = 1

Suy ra tích này chia hết cho 3x4x5 = 60 (1)

Mặt khác suy luận tương tự ta cũng suy ra được 5(n-1).n.(n+1) chia hết cho 60 (2)

Từ (1) và (2) suy ra đpcm

2 tháng 11 2016

Cho hình thoi ABCD có cạnh là a. Gọi r1 và rlaf bán kính các đường tròn ngoại tiếp tam giác ABC và ABD.

cmr: \(a.\frac{1}{r^2_1}+\frac{1}{r_2^2}=\frac{4}{a^2}\)

\(b.S_{ABCD}=\frac{8r_1^3r_2^3}{\left(r_1^2+r_2^2\right)^2}\)

14 tháng 8 2019

\(b,n^2\left(n^4-1\right)\)

\(=n^2\left(n^2+1\right)\left(n^2-1\right)\)

Ta có:\(n^2-1;n^2;n^2+1\) là 3 số nghuyên liên tiếp

\(\Rightarrow n^2\left(n^2+1\right)\left(n^2-1\right)⋮60\)

\(\Rightarrowđpcm\)

=> 

14 tháng 8 2016

giải câu c nha

xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6

tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6

\(\Rightarrow\)A chia hết cho 6

=> a3+b3+c3 -a-b-c chia hết cho 6

mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6

k cho tớ xog tớ giải hai câu còn lại cho nha

14 tháng 8 2016

a/ n- n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6

7 tháng 4 2017

Xét các dạng của n trong phép chia cho 2 và 3

2k  , 2k+1

3p, 3p+1. 3p+2

Tham khảo bài làm :

Câu hỏi của êfe - Toán lớp 7 - Học toán với OnlineMath

1 tháng 11 2018

Ta có: \(2\equiv-1\left(mod 3\right)\Rightarrow2^n\equiv\left(-1\right)^n\left(mod3\right)\)

Vì n là số tự nhiên nên n có dạng 2k hoặc 2k + 1 (k là số tự nhiên)

+) Nếu n có dạng 2k \(\Rightarrow2^n\equiv\left(-1\right)^n\equiv\left(-1\right)^{2k}\equiv\left[\left(-1\right)^2\right]^k\equiv1\left(mod3\right)\Rightarrow2^n-1\equiv0\left(mod3\right)\Rightarrow2^n-1⋮3\Rightarrow A⋮3\)

Nếu n có dạng 2k + 1 \(\Rightarrow2^n\equiv\left(-1\right)^{2k+1}\equiv\left(-1\right)^{2k}.\left(-1\right)\equiv-1\left(mod3\right)\Rightarrow2^n+1\equiv0\left(mod3\right)\Rightarrow2^n+1⋮3\Rightarrow A⋮3\)

19 tháng 11 2016

câu 2

Ta có:                                                                                                                                                                                     P(0)=d =>d chia hết cho 5  (1)                                                                                                                                                P(1)=a+b+c+d =>a+b+c chia hết cho 5  (2)                                                                                                                               P(-1)=-a+b-c+d chia hết cho 5                                                                                                                                              Cộng (1) với (2) ta có: 2b+2d chia hết cho 5                                                                                                                               Mà d chia hết cho 5 =>2d chia hết cho 5                                                                                                                                  =>2b chia hết cho 5 =>b chia hết cho 5                                                                                                                          P(2)=8a+4b+2c+d chia hết cho 5                                                                                                                                       =>8a+2c chia hết cho 5 ( vì 4b+d chia hết cho 5)                                                                                                                      =>6a+2a+2c chia hết cho 5                                                                                                                                         =>6a+2(a+c) chia hết cho 5 Mà a+c chia hết cho 5 (vì a+b+c chia hết cho 5, b chia hết cho 5)                                                          =>6a chia hết cho 5                                                                                                                                                                =>a chia hết cho 5 =>c chia hết cho 5                                                                                                                                                                  Vậy a,b,c chia hết cho 5  cho mình 1tk nhé

19 tháng 11 2016

1b)

Đặt 2014+n2=m2(m∈Z∈Z,m>n)

<=>m2-n2=2014<=>(m+n)(m-n)=2014

Nhận thấy:m và n phải cùng chẵn hoặc cùng lẻ 

Suy ra m+n và m-n đều chẵn,m+n>m-n

Mà 2014=2.19.53=>m+n và m-n không cùng chẵn

=>không có giá trị nào thoả mãn

tk mình nhé

11 tháng 9 2020

Bài chỉ chứng minh vế phải chia hết vế trái chứ k tìm n hay a nhé bạn

AH
Akai Haruma
Giáo viên
11 tháng 9 2020

Nguyễn Ngọc Phương: Mình đâu có tìm $n,a$ đâu hả bạn? Mình đang chỉ ra TH sai mà???

Chả hạn, chứng minh $n(n+1)(n^2+1)\vdots 5$ thì có nghĩa mọi số tự nhiên/ nguyên $n$ đều phải thỏa mãn. Nhưng chỉ cần có 1 TH $n$ thay vào không đúng nghĩa là đề không đúng rồi.

12 tháng 10 2015

\(4-\sqrt{15}=\frac{1}{4+\sqrt{15}}\)

Đặt \(t=4+\sqrt{15}\)

Ta chứng minh \(t^n+\frac{1}{t^n}\in N\text{ (*) }\forall n\in N\text{*}.\)

\(+n=1:\text{ }t+\frac{1}{t}=4+\sqrt{15}+4-\sqrt{15}=8\in N\)

\(+n=2:\text{ }t^2+\frac{1}{t^2}=\left(t+\frac{1}{t}\right)^2-2\in N\)

Giả sử (*) đúng với n = k-1 và n = k, tức là \(t^{k-1}+\frac{1}{t^{k-1}}\in N;\text{ }t^k+\frac{1}{t^k}\in N\)

Ta chứng minh (*) đúng với n = k+1.

Thật vậy, ta có: \(\left(t+\frac{1}{t}\right)\left(t^k+\frac{1}{t^k}\right)\in N\Rightarrow t^{k+1}+\frac{1}{t^{k+1}}+t^{k-1}+\frac{1}{t^{k-1}}\in N\)

\(\Rightarrow t^{k+1}+\frac{1}{t^{k+1}}\in N\text{ }\left(do\text{ }t^{k-1}+\frac{1}{t^{k-1}}\in N\right)\)

Vậy theo nguyên lý quy nạp, (*) đúng với mọi số tự nhiên n.

Làm tương tự như trên, ta cũng chứng minh được \(t^n+\frac{1}{t^n}\text{ }\vdots\text{ }2\text{ }\forall n\in N\text{*}\)