K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{n-6}{n-2}=\dfrac{n-2-4}{n-2}=1-\dfrac{4}{n-2}\)

Để \(A_{max}\) thì \(1-\dfrac{4}{n-2}\) max

=>\(-\dfrac{4}{n-2}\) max

=>\(\dfrac{4}{n-2}\) min

=>n-2=-1

=>n=1

Để \(A_{min}\) thì \(\dfrac{4}{n-2}\) max

=>n-2=1

=>n=3

Vậy: \(A_{max}=\dfrac{1-6}{1-2}=\dfrac{-5}{-1}=5\) khi n=1

\(A_{min}=\dfrac{3-6}{3-2}=\dfrac{-3}{1}=-3\) khi n=3

5 tháng 6 2019

....

a) \(n\in\left(-1,1,3,5\right)\)thì A có giá trị nguyên

b) Ko hiểu

***

A=n+1n2n+1n−2

a. để B là phân số thì n-2 khác 0 => n khác 2

b.A=n+1n2n+1n−2n2+3n2n−2+3n−2n2n2n−2n−2+3n23n−2=1+3n23n−2

để B nguyên khi n-2 là ước của 3

ta có ước 3= (-1;1;3;-3)

nên n-2=1=> n=3

n-2=-1=> n=1

n-2=3=> n=5

n-2=-3=> n=-1

vậy để A nguyên thì n=(-1;1;3;5)

8 tháng 8 2020

Bg

Ta có: C = \(\frac{n^2-5}{n^2-2}\)   (với n thuộc Z)

Để C nguyên thì n2 - 5 \(⋮\)n2 - 2

=> n2 - 5 - (n2 - 2) \(⋮\)n2 - 2

=> n2 - 5 - n2 + 2 \(⋮\)n2 - 2

=> (n2 - n2) - (5 - 2) \(⋮\)n2 - 2

=> 3 \(⋮\)n2 - 2

=> n2 - 2 thuộc Ư(3)

Ư(3) = {+1; +3}

=> n2 - 2 = 1 hay -1 hay 3 hay -3

.....Có làm thì mới có ăn :))

=> n = {-1; 1}

8 tháng 8 2020

\(C=\frac{n^2-5}{n^2-2}=\frac{n^2-2-3}{n^2-2}=1-\frac{3}{n^2-2}\)

Để C nguyên => \(\frac{3}{n^2-2}\)nguyên

=> \(3⋮n^2-2\)

=> \(n^2-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

n2-21-13-3
n\(\pm\sqrt{3}\)\(\pm1\)\(\pm\sqrt{5}\)Không có giá trị thỏa mãn

n là số nguyên => n = \(\pm1\)

DT
14 tháng 6 2023

a) Để A là phân số thì : \(n-2\ne0=>n\ne2\)

b) Để A nhận giá trị nguyên âm lớn nhất 

\(=>A=-1\\ =>\dfrac{n-6}{n-2}=-1\\ =>n-6=-\left(n-2\right)\\ =>n-6=-n+2\\ =>n+n=6+2\\ =>2n=8\\ =>n=4\left(TMDK\right)\)

c) \(A=\dfrac{n-6}{n-2}=\dfrac{n-2-4}{n-2}=1-\dfrac{4}{n-2}\)

Để A nhận gt số nguyên thì : \(\dfrac{4}{n-2}\in Z=>4⋮\left(n-2\right)\\ =>n-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\\ =>n\in\left\{3;1;4;0;6;-2\right\}\)

Đến đây bạn lập bảng giá trị rồi thay từng gt n vào bt A, giá trị nào cho A là STN thì bạn nhận gt đó ạ.

d) Mình nghĩ bạn thiếu đề ạ 

28 tháng 6 2019

\(a,F_{\left(x\right)}=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x^2+5x+6\right)\left(x^2+5x-6\right)\)

Đặt \(x^2+5x=a\)

\(\Rightarrow F_x=\left(a+6\right)\left(a-6\right)=a^2-36\)

\(\Rightarrow F_{min}=-36\Leftrightarrow a^2=0\)

\(\Rightarrow x^2+5x=0\Rightarrow x\left(x+5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy GTNN của \(F_x=-36\Leftrightarrow x\in\left\{0;-5\right\}\)

\(b,A=\left(1-x^n\right)\left(1+x^n\right)+\left(2-y^n\right)\left(2+y^n\right)\)

\(=1-x^{2n}+4-y^{2n}\)

\(=5-x^{2n}-y^{2n}\)

\(\Rightarrow A_{max}=5\Leftrightarrow\hept{\begin{cases}x^{2n}=0\\y^{2n}=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)

28 tháng 1 2018

1,

Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)

\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)

\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)

Dấu "=" xảy ra khi x = 0, y = 13

Vậy Pmin = 6/7 khi x = 0, y = 13

2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)

Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6

28 tháng 1 2018

3,

Ta có: \(10\le n\le99\)

\(\Rightarrow20\le2n\le198\)

\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)

\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)

\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)

Ta thấy chỉ có 36 là số chính phương 

Vậy n = 32

4,

ÁP dụng TCDTSBN ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)

\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)

\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)

Vậy B = 8