Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt n+20 =a^2 (a là stn)
n-38=b^2 ( b là số tự nhiên)
=> (n+20)-(n-38) =a^2-b^2
=> (a-b)(a+b) =58
=> a+b là ước nguyên dương của 58
Ta có bảng sau:
a+b | 1 | 29 |
a-b | 58 | 2 |
a | 29,5(loại vì không phải số tự nhiên) | 15,5(loại vì không phải số tự nhiên) |
b | loại | loại |
n | loại | loại |
loại | loại |
Vậy không có giạ trị n thỏa mãn đề bài.
(2n + 3) ⋮ (3n + 2)
⇒ 3.(2n + 3) ⋮ (3n + 2)
⇒ (6n + 9) ⋮ (3n + 2)
⇒ (6n + 4 + 5) ⋮ (3n + 2)
⇒ [2(3n + 2) + 5] ⋮ (3n + 2)
Để (2n + 3) ⋮ (3n + 2) thì 5 ⋮ (3n + 2)
⇒ 3n + 2 ∈ Ư(5) = {-5; -1; 1; 5}
⇒ 3n ∈ {-7; -3; -1; 3}
⇒ n ∈ {-7/3; -1; -1/3; 1}
Mà n là số nguyên
⇒ n ∈ {-1; 1}
60% - (3/5 + 3/7) - 5/49 x (-7)2
=3/5 - 36/35 - 5/49 x 49
= -3/7 - 5
= -38/7
ta có:n+1 chia hết cho n+4
n+1 chia hết cho n+1
=>(n+1)-(n+4) chia hết cho (n+4)
=>n+1-n+4 chia hết cho n+4
=> -3 chia hết cho n+4
=>n+4 thuộc Ư(-3)={1;-1;3;-3}
rồi sau đó bạn lập bảng hoặc ghi chữ
Giả sử x>y ta có :
\(\hept{\begin{cases}90=2\cdot3^2\cdot5\\1350=2.3^3.5^2\end{cases}}\)
vậy ta có hai số (x,y) là \(\hept{\begin{cases}x=3^2\cdot5\\y=2\cdot3\cdot5\end{cases}\text{ hoặc :}\hept{\begin{cases}x=2\cdot3^2\cdot5\\y=3\cdot5\end{cases}}}\)
tương tự với y>x
Bài 1:
a) 3500 = 3100.5 = (35)100 = 243100
5300 = 5100.3 = (53)100 = 125100
Vì 243100 > 125100 nên 3500 > 5300
b) Không thể biết, nếu n > 100 thì thừa lớn hơn, nếu n < 9 thì thừa bé hơn.
Ta có : \(4n+5⋮5\)
\(\Leftrightarrow4n⋮5\)
\(\Leftrightarrow n⋮5\)
\(\Rightarrow n\inℕ\left(ĐK:n\in B_{\left(5\right)}\right)\)
\(b,3n+4⋮n-1\)
Ta có : \(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=\frac{3(n-1)+7}{n-1}=3+\frac{7}{n-1}\)
Do đó : \(7⋮n-1\)=> \(n-1\inƯ(7)\)
=> \(n-1\in\left\{1;7\right\}\)
=> \(n\in\left\{2;8\right\}\)
\(\frac{n-5}{n+1}=\frac{1}{2}\left(n\ne-1\right)\)
\(\Leftrightarrow2n-10=n+1\)
\(\Leftrightarrow n=11\)(tm)
vâỵ n=11
Theo bài ra ta có:
A=\(\frac{n-5}{n+1}=\frac{n+1-6}{n+1}=\frac{n+1}{n+1}-\frac{6}{n+1}\)
\(\Rightarrow\)\(1-\frac{6}{n+1}=\frac{1}{2}\)
\(\Rightarrow\frac{6}{n+1}=\frac{1}{2}\)
\(\Rightarrow n+1=12\)
\(\Rightarrow n=11\)