Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có A=\(\frac{10}{a^m}+\frac{10}{a^n}\)=\(\frac{10}{a^m}+\frac{9}{a^n}+\frac{1}{a^n}\)
B=\(\frac{11}{a^m}+\frac{9}{a^n}=\frac{10}{a^m}+\frac{1}{a^m}+\frac{9}{a^n}\)
do \(\frac{10}{a^m}+\frac{9}{a^n}=\frac{10}{a^m}+\frac{9}{a^n}\)nên để so sánh A và B ta đi so sánh \(\frac{1}{a^n}\)và \(\frac{1}{a^n}\)
xét 2 trường hợp
th1) m=n => \(\frac{1}{a^m}=\frac{1}{a^n}\)=>A=B
th2) m>n=>\(\frac{1}{a^m}<\frac{1}{a^n}\)=>A>B
th3) m<n=>\(\frac{1}{a^m}>\frac{1}{a^n}\)=>A<B
\(A=\frac{10}{a^m}+\frac{10}{a^n}\)
\(B=\frac{11}{a^m}+\frac{11}{a^n}=\left(\frac{10}{a^m}+\frac{10}{a^n}\right)+\left(\frac{1}{a^m}+\frac{1}{a^n}\right)\)
Vậy A < B
chọn đúng nhé !
Dễ mà, bài này trên lớp cậu đã hỏi mình đâu ?
Giải
A = \(\left(\frac{10}{a^m}+\frac{9}{a^n}\right)+\frac{1}{a^n}\) ; B = \(\left(\frac{10}{a^m}+\frac{9}{a^n}\right)+\frac{1}{a^m}\)
Muốn so sánh A với B chỉ cần so sánh \(\frac{1}{a^m}\) và \(\frac{1}{a^n}\)
Xét các trường hợp:
TH1: a = 1 thì am=an do đó A=B
TH2: a \(\ne\) 1 thì xét m và n
- Nếu m = n thì am = an do đó A=B
- Nếu m < n thì am < an do đó \(\frac{1}{a^m}\) > \(\frac{1}{a^n}\) ; vậy A<B
- Nếu m > n thì am > an do đó \(\frac{1}{a^m}\) < \(\frac{1}{a^n}\) ; vậy A>B
Ta có :
\(A=\frac{10}{a^m}+\frac{10}{a^n}=\frac{10}{a^m}+\frac{9}{a^n}+\frac{1}{a^n}\)
\(B=\frac{11}{a^m}+\frac{9}{a^n}=\frac{10}{a^m}+\frac{9}{a^n}+\frac{1}{a^m}\)
Cả 2 vế đều có \(\frac{10}{a^m}+\frac{9}{a^n}\)nên ta so sánh \(\frac{1}{a^n}và\frac{1}{a^m}\)
TH1:
Nếu m>n => a^m>a^n => 1/a^m<1/a^n => B<A
TH2:
Nếu m<n =>a^m<a^n => 1/a^m>1/a^n => B>A
TH3:
Nếu m=n => a^m=a^n => 1.a^m=1/a^n => A=B