K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2015

\(\frac{a}{m}=\frac{2a}{2m};\frac{b}{m}=\frac{2b}{2m}\)

Vì \(\frac{a}{m}<\frac{b}{m}\) và m > 0 nên a < b 

+) a < b => a + b < b +b => a+ b < 2b mà m > 0 => \(\frac{a+b}{2m}<\frac{2b}{2m}=\frac{b}{m}\)

+) a < b => a+ a< a +b => 2a < a + b mà m > 0  => \(\frac{2a}{2m}<\frac{a+b}{2m}\Rightarrow\frac{a}{m}<\frac{a+b}{2m}\)

Vậy.....

24 tháng 5 2019

mk biết 

khi bạn gửi câu hỏi mà muốn viết phân số 

Bạn nhấn vào kí tự thứ 3 hình chữ M nằm ngang rồi tim hình phân số và chọn là song

Ta cá:Vi x<y nen \(\frac{a}{m}< \frac{b}{m}\)

\(\Rightarrow a< b\)

\(\Rightarrow a+a< a+b\)

\(\Rightarrow2a< a+b\)

\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}\)

\(\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\)

\(\Rightarrow x< z\left(1\right)\)

Ta lại cá:

\(a< b\)

\(\Rightarrow a+b< b+b\)

\(\Rightarrow a+b< 2b\)

\(\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\)

\(\Rightarrow\frac{a+b}{2m}< \frac{b}{m}\)

\(\Rightarrow z< y\left(2\right)\)

Từ (1) và (2) 

\(\Rightarrow x< z< y\)(điều phải chứng minh)

Nhớ h cho mk nha

22 tháng 6 2015

\(\frac{a}{b}=\frac{a\left(b+m\right)}{b\left(b+m\right)}=\frac{ab+am}{b\left(b+m\right)}\)

\(\frac{a+m}{b+m}=\frac{b\left(a+m\right)}{b\left(b+m\right)}=\frac{ab+bm}{b\left(b+m\right)}\)

Vì m> 0 ; a< b ; b> 0 => a m < bm 

=> ab + am< ab + bm =>\(\frac{ab+am}{b\left(b+m\right)}<\frac{ab+bm}{b\left(b+m\right)}\)Hay a/b < a+m/b+m => ĐPCM

10 tháng 9 2019

Ta có: \(\frac{a}{m}< \frac{b}{m}\)

Mà m>0 => a<b

Do đó: \(\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)

hay \(\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)

26 tháng 8 2016

1) Với a, b ∈ Z, b> 0

- Khi a , b cùng dấu thì \(\frac{a}{b}\) > 0

- Khi a,b khác dấu thì \(\frac{a}{b}\)< 0

Tổng quát: Số hữu tỉ  \(\frac{a}{b}\) ( a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0

26 tháng 8 2016

Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y

16 tháng 7 2015

ta có : x < y hay a/m < b/m   => a < b.

So sánh x, y, z ta chuyển chúng cùng mẫu : 2m

x =  a/m  = 2a/ 2m và y = b/m = 2b/2m  và z = (a + b) / 2m

mà : a < b

suy ra : a + a < b + a

hay 2a < a + b

suy ra x < z (1)

mà : a < b

suy ra : a + b < b + b

hay a + b < 2b

suy ra z < y (2)

30 tháng 5 2016

Ta có:x<y

=>x+x<y+x

\(\Rightarrow\frac{2a}{m}< \frac{a+b}{m}\)

=>2a<a+b

Mà \(x=\frac{a}{m}=\frac{2a}{2m}\)

\(y=\frac{b}{m}=\frac{2b}{2m}\)

Theo giả thuyết trên:

=>2a<a+b<2b

\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)

\(\Rightarrow x< z< y\left(DPCM\right)\)