Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk nhắn nhầm một vài chỗ mong các bn thứ lỗi.( Ở câu c là cho BI=5cm nha)
\(P=\sqrt{\left(x-\dfrac{3}{4}\right)^2}+\dfrac{1}{4}\)
\(=\left|x-\dfrac{3}{4}\right|+\dfrac{1}{4}\)
Ta có : \(\left|x-\dfrac{3}{4}\right|\ge0\forall x\Rightarrow\left|x-\dfrac{3}{4}\right|+\dfrac{1}{4}\ge\dfrac{1}{4}\forall x\)
\(\Rightarrow P\ge\dfrac{1}{4}\)
Dấu "=" xảy ra
\(\Leftrightarrow x-\dfrac{3}{4}=0\Leftrightarrow x=\dfrac{3}{4}\)
Vậy GTNN của P là \(\dfrac{1}{4}\) khi x = \(\dfrac{3}{4}\)
(1)
A B C H D E 5cm 5cm 8cm a) Xét \(\Delta\)ABH và \(\Delta\)ACH, có:
\(\widehat{AHB}=\widehat{AHC}=90độ\) (AH vuông góc với BC)
AH là cạnh chung
AB=AC (\(\Delta\)ABC cân tại A)
\(\Rightarrow\Delta ABH=\Delta ACH\) (cạnh huyền _ cạnh góc vuông)
\(\Rightarrow HB=HC=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\) (2 cạnh tương ứng)
\(\Rightarrow\widehat{CAH}=\widehat{BAH}\) (2 góc tương ứng)
b)
Vì \(\Delta\)ABH có \(\widehat{AHB}=90độ\)
\(\Rightarrow\Delta ABH\) là tam giác vuông.
Áp dụng định lý Pitago vào \(\Delta ABH\), có:
\(AC^2=AH^2+HC^2\)
Hay \(5^2=AH^2+4^2\)
\(\Rightarrow AH^2=5^2-4^2=25-16=9\)
\(\Rightarrow AH=\sqrt{9}=3\left(cm\right)\)
c)
Xét \(\Delta\)BDH và \(\Delta\)CEH, có:
\(\widehat{BDH}=\widehat{CEH}=90độ\) (gt)
HB=HC (\(\Delta ABH=\Delta ACH\))
\(\widehat{ABC}=\widehat{ACB}\) (\(\Delta ABC\) cân tại A)
\(\Rightarrow\Delta BDH=\Delta CEH\) (cạnh huyền_góc nhọn)
\(\Rightarrow BD=CE\)
Mà có: AB=AC (\(\Delta\)ABC cân tại A)
\(\Rightarrow\)AB-BD=AC-AE
Hay AD=AE
\(\Rightarrow\Delta\)ADE cân tại A
\(\Rightarrow\widehat{ADE}=\dfrac{180-\widehat{BAC}}{2}\)
Lại có: \(\widehat{ABC}=\dfrac{180-\widehat{BAC}}{2}\)
\(\Rightarrow\widehat{ADE}=\widehat{ABC}\)
Vì \(\widehat{ADE}\) và \(\widehat{ABC}\) 2 góc đồng vị
\(\Rightarrow\) DE song song với BC
Chúc bạn học tốt!
A B C M E 1 2 1
Giải:
Xét \(\Delta AMB,\Delta EMC\) có:
AM = EM ( gt )
\(\widehat{M_1}=\widehat{M_2}\) ( đối đỉnh )
BM = MC ( gt )
\(\Rightarrow\Delta AMB=\Delta EMC\left(c-g-c\right)\)
\(\Rightarrow AB=EC\) ( cạnh t/ứng )
\(\widehat{BAM}=\widehat{E_1}\) ( góc t/ứng )
Ta có: AB < AC ( quan hệ giữa đường vuông góc - đường xiên )
\(\Rightarrow EC< AC\)
\(\Delta ACE\) có: EC < AC
\(\Rightarrow\widehat{E_1}>\widehat{MAC}\)
\(\Rightarrow\widehat{BAM}>\widehat{MAC}\left(đpcm\right)\)
Vậy...
Vì G là trọng tâm của ABC nên
AG = 2/3AM
=> GM = AM - AG = AM - 2/3AM = 1/3AM
Vậy \(\frac{GM}{AM}=\frac{1}{3}\)
\(a,x^2-113=31\\ \Leftrightarrow x^2=144\\ \Leftrightarrow x=\pm12\\ Vay...\\ b,\sqrt{x+2,29}=2.3\\ \Leftrightarrow x+2,29=6^2\\ x=36-2,29=33,71\\ c,x^4=256\\ \Leftrightarrow x=\pm4\\ Vay...\\ d,\left(\sqrt{x}-1\right)^2=0,5625\\ \Leftrightarrow\sqrt{x}-1\in\left\{-0,75;0,75\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{0,25;1,75\right\}\\ Vay...\\ e,2\sqrt{x}-x=0\\ \Leftrightarrow\sqrt{x}\left(2-\sqrt{x}\right)=0\\ \Leftrightarrow\sqrt{x}=0hoac2-\sqrt{x}=0\\ \Leftrightarrow x=0hoacx=4\\ f,x+\sqrt{x}=0\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow x=0hoacx=1\)
a. x2−113=31
=> x2=144
=> x2=\(\sqrt{144}\)
=> x=\(\pm12\)
c.x4=256
=> x4=44
=> x=\(\pm4\)
Xét tam giác ABC có AM là đường trung tuyến
=>AG= 2/3AM
AM=6:2/3
AM=9
=>GM=1/3AM
GM=1/3*9
GM=3
AM=
thế AG bằng bao nhiêu vậy ạ