Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=[-3,2] B=(0,8] C=(-\(\infty\),-1) D=[6,+\(\infty\))
(A\(\cap\)B)\(\cup\)C=(-\(\infty\),2]
A\(\cup\)(B\(\cap\)C)=[-3,2]
(A\(\cap\)C)\B=[-3,-1)
(D\B)\(\cap\)A=[-3,+\(\infty\))
R\A=(-\(\infty\),-3)\(\cup\left(2,+\infty\right)\)
R\B=(-\(\infty\),0]\(\cup\left(8,+\infty\right)\)
R\C=[-1,+\(\infty\))
a: B\A=(-1;4]
\(C_R^B=R\text{\B}=(-\infty;-1]\cup\left(6;+\infty\right)\)
b: C=(-2;4]
D={0}
\(C\cap D=(-2;4]\)
Ta có: \(\frac{a}{b}\)<\(\frac{c}{d}\)-->ad<bc (b,d>0)
Gỉa sử \(\frac{a}{b}\)<\(\frac{ab+cd}{b^2+d^2}\) đúng
a (b2+d2)<b(ab+cd) (b,d>0)
<=> ab2+ad2<ab2+bcd
<=> ad2-bcd<0
<=> d(ad-bc)<0 (*)
mà d>0; ad<bc(cmt)--> ad-bc<0
nên (*) đúng.
cm tiếp vế kia cũng như thế rồi kết luận