Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3a^2+3b^2=10ab\)
\(\Rightarrow3a^2-10ab+3b^2=0\)
\(\Rightarrow3a^2-9ab-ab+3b^2=0\)
\(\Rightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)
\(\Rightarrow\left(3a-b\right)\left(a-3b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3a-b=0\\a-3b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3a=b\\a=3b\end{matrix}\right.\)
\(a>b>0\)
\(\Rightarrow a=3b\)
Thay vào biểu thức ta có:
\(\dfrac{a-b}{a+b}=\dfrac{3b-b}{3b+b}=\dfrac{2b}{4b}=\dfrac{1}{2}\)
Trả lời
Hình như b viết thiếu đề hay sao ý
Ng ta ko cho 3a^2+3b^2 bằng bao nhiêu ag
Theo tc của DTSBN
\(\frac{a+b-3c}{c}=\frac{b+c-3a}{a}=\frac{c+a-3b}{b}=\frac{a+b-3c+b+c-3a+c+a-3b}{c+a+b}\)
\(=\frac{-a-b-c}{a+b+c}=-1\)
\(\Rightarrow\hept{\begin{cases}a+b-3c=-c\\b+c-3a=-a\\c+a-3b=-b\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)
\(\Rightarrow a=b=c\left(đpcm\right)\)
a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\); \(b=3k\); \(c=5k\)
Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)
b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)
\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)
\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)
\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)
\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)
Do đó: +) \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)
+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)
+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)
Từ \(a+b+c=6\Rightarrow\hept{\begin{cases}a+b=6-c\\b+c=6-a\\a+c=6-b\end{cases}}\)
\(\Rightarrow A=\frac{b+c+5}{a+1}+\frac{c+a+4}{b+2}+\frac{a+b+3}{c+3}\)
\(=\frac{6-a+5}{a+1}+\frac{6-b+4}{b+2}+\frac{6-c+3}{c+3}\)
\(=\frac{11-a}{a+1}+\frac{10-b}{b+2}+\frac{9-c}{c+3}\)
\(=-1+\frac{12}{a+1}-1+\frac{12}{b+2}-1+\frac{12}{c+3}\)
\(=-3+12\left(\frac{1}{a+1}+\frac{1}{b+2}+\frac{1}{c+3}\right)\)
Áp dụng bất đẳng thức Cauchy - Schwrarz dưới dạng Engel ta có :
\(A\ge-3+12.\frac{\left(1+1+1\right)^2}{6+\left(a+b+c\right)}=-3+12.\frac{9}{12}=6\) (đpcm)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}}\)
Vậy \(P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+b}=2\)
bghvuyhbjb
nvtgkhihnoi
jhyubiuy7ikl
jhutgiuhyi8f
235123
5623623
Bài làm:
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}=\frac{5\left(a+b+c\right)}{a+b+c}=5\)
\(\Rightarrow\hept{\begin{cases}3a+b+c=5a\\a+3b+c=5b\\a+b+3c=5c\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b+c=3a\\a+b+c=3b\\a+b+c=3c\end{cases}}\Rightarrow a=b=c\)
Vậy \(P=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{2c}{c}+\frac{2a}{a}+\frac{2b}{b}=2+2+2=6\)
Vậy P = 6
Vì a ; b ; c > 0 => a + b + c > 0
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}=\frac{3a+b+c+a+3b+c+a+b+3c}{a+b+c}\)
\(=\frac{5\left(a+b+c\right)}{a+b+c}=5\)
\(\Rightarrow\hept{\begin{cases}3a+b+c=5a\\a+3b+c=5b\\a+b+3c=5c\end{cases}}\Rightarrow\hept{\begin{cases}b+c=2a\\a+c=2b\\a+b=2c\end{cases}}\)
Khi đó P = \(\frac{2c}{c}+\frac{2a}{a}+\frac{2b}{b}=2+2+2=6\)