K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

vì b > 0 
ta chia phương trình cho b^2 : 
2(a/b)^2 - 5(a/b) +2 =0 
giải phương trình bậc 2 ,ta dc : (a/b) = 2 và (a/b) = (1/2) 
xét a = 2b : 
thay a=2b vào (1) : 8b^2 +2b-10 = 0 
giải b= -(5/4) => a = -(10/4) 
b = 1 => a = 2 
thay a,b vào (a+b)/(a-b) ==> đáp số là 3 
xét b = 2a : (tương tự) ==> đáp số là (1/3)

15 tháng 12 2017

bạn ơi P=1 nha bạn

26 tháng 11 2017

Ta có: \(2\left(a^2+b^2\right)=5ab\Rightarrow2a^2+2b^2-5ab=0\) 0 

\(\Rightarrow2a^2-ab-4ab+2b^2=0\) \(\Rightarrow a\left(2a-b\right)-2b\left(2a-b\right)=0\)

\(\Rightarrow\left(2a-b\right)\left(a-2b\right)=0\) \(\Rightarrow\orbr{\begin{cases}2a-b=0\\a-2b=0\end{cases}\Rightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}}\)

TH1: 2b=a thay vào P ta được:

\(P=\frac{3.2b-b}{2.2b+b}=\frac{6b-b}{4b+b}=\frac{5b}{5b}=1\)

TH2: 2a=b \(\Rightarrow P=\frac{3a-2a}{2a+2a}=\frac{a}{4a}=\frac{1}{4}\)

Vậy \(\orbr{\begin{cases}P=1\\P=\frac{1}{4}\end{cases}}\)

18 tháng 9 2019

bạn ơi, mình sửa lại nhá.

a>b>0 => a=2b (không có th b=2a)

=> P=1

23 tháng 2 2015

Ta có : 2(a2 +b2) = 5ab <=> 2a2 - 5ab + 2b2 = 0 <=> 2a2 - 4ab - ab + 2b2 =0 <=> 2a(a - 2b) - b(a - 2b) =0

<=> (2a - b)(a - 2b) = 0 <=> a = 2b hay b = 2a

Vì a > b > 0 nên chỉ xảy ra trường hợp a = 2b. Do đó \(P=\frac{3.2b-b}{2.2b+b}=\frac{5b}{5b}=1\)

 

9 tháng 4 2018

chả lời câu này

9 tháng 4 2018

 Bài này theo mình nên chọn phương án phân tích ĐTTNT từ điều kiện đầu tiên! 
2a² + 2b² = 5ab 
<=> 2a² - 5ab + 2b² = 0 
<=> 2a² - 4ab - ab + 2b² = 0 
<=> 2a(a - 2b) - b(a - 2b) = 0 
<=> (a - 2b)(2a - b) = 0 
<=> [a = 2b 
.......[ a = b/2 (Loại vì a > b) 
Thay a = 2b vào biểu thức ta có: 
. .2b + b . . .. 3b 
------------ = ---------- = 3 
. .2b - b . . . . b 

10 tháng 2 2017

a)Từ \(2\left(a^2+b^2\right)=5ab\)\(\Rightarrow2a^2+2b^2-5ab=0\)

\(\Rightarrow2a^2-4ab-ab+2b^2=0\)

\(\Rightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\Rightarrow\left(2a-b\right)\left(a-2b\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2a-b=0\\a-2b=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}a=\frac{b}{2}\\a=2b\end{cases}}\)

Thay vào tính được P

b)sai đề

12 tháng 11 2016

Từ \(2\left(a^2+b^2\right)=5ab\)\(\Rightarrow2a^2+2b^2-5ab=0\)

\(\Rightarrow2b^2-ab-4ab+2a^2=0\)

\(\Rightarrow b\left(2b-a\right)-2a\left(2b-a\right)=0\)

\(\Rightarrow\left(b-2a\right)\left(2b-a\right)=0\)

\(\Rightarrow\orbr{\begin{cases}b-2a=0\\2b-a=0\end{cases}}\Rightarrow\orbr{\begin{cases}b=2a\\a=2b\end{cases}}\Rightarrow\orbr{\begin{cases}a=\frac{b}{2}\\b=\frac{a}{2}\end{cases}}\)

  • Với \(b=2a\Rightarrow P=\frac{3a-b}{2a+b}=\frac{\frac{3b}{2}-b}{\frac{2b}{2}+b}=\frac{\frac{3b}{2}-\frac{2b}{2}}{\frac{2b}{2}+\frac{2b}{2}}=\frac{\frac{b}{2}}{\frac{4b}{2}}=\frac{1}{4}\)
  • Với \(b=2a\Rightarrow P=\frac{3a-b}{2a+b}=\frac{3a-\frac{a}{2}}{2a+\frac{a}{2}}=\frac{\frac{6a}{2}-\frac{a}{2}}{\frac{4a}{2}+\frac{a}{2}}=\frac{\frac{5a}{2}}{\frac{5a}{2}}=1\)
4 tháng 3 2017

Giá trị của biểu thức P là \(1\)

21 tháng 3 2016

từ giả thiết chuyển vế phân tích thành nhân tử ta đc (a-b)(2a-b)=0=>a=2b(do a>b>0)=.P=1