K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2021

Ta có \(a>b\)\(=>a+4>b+4\)

Nên bất đẳng thức b, là đúng

22 tháng 9 2021
Cảm ơn bạn nha !

không cần giỏi cũng giải được mà. cứ giải đi không cần biết đúng hay sai là được

THẾ LÀ GIỎI RÙI

2 tháng 2 2016

nhưng mình nghĩ mãi không ra nếu bạn nói được như vậy thì thử giải giúp mình xem

30 tháng 3 2017

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}\ge\dfrac{4}{a+2b+c}\)

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}\ge\dfrac{4}{2a+b+c}\)

\(\dfrac{1}{a+c}+\dfrac{1}{b+c}\ge\dfrac{4}{a+b+2c}\)

\(\Rightarrow2\dfrac{1}{a+b}+2\dfrac{1}{b+c}+2\dfrac{1}{a+c}\ge\dfrac{4}{2a+b+c}+\dfrac{4}{a+2b+c}+\dfrac{4}{a+b+2c}\)

\(\Leftrightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge2\left(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\right)\left(ĐPCM\right)\)

30 tháng 3 2017

Ta có a,b>0, áp dụng bất đẳng thức Cô - si cho hai số không âm:
chú ý: MÌNH DÙNG CHỮ v TƯỢNG TRƯNG CHO DẤU CĂN.
ta có : (1/a+1/b)/2>=v(1/a*1/b)
=>1/a + 1/b >= 2*1/v(a*b)
mà v(a*b)<=(a+b)/2
=> 2*1/v(a*b) >= 2*1/((a+b)/2) = 4(a+b)
=>1/a + 1/b >= 4(a+b) (đpcm).
Cmr: 1/(a+b) + 1/(a+c) + 1/(b+c)>=2(1/(2a+b+c) + 1/...
chú ý: MÌNH DÙNG CHỮ v TƯỢNG TRƯNG CHO DẤU CĂN.
ta cũng áp dụng bất đẳng thức cô si cho hai số không âm:
1/(a+b) + 1/(b+c) >=2*1/(v(a+b)*(a+c))
tương tự với 1/(a+b) + 1/(b+c) >= 2*1/(v(a+b)*(b+c))
tương tự với 1/(a+c) + 1/(b+c) >= 2*1/1/(v(a+c)*(b+c))
=>2(1/(a+b) + 1/(a+c) + 1/(b+c))>=2*[1/(v(a+b)*(a+c))+v(a+b)*(b+... (1)
mà v((a+b)*(a+c))<=(a+b+a+c)/2=(2a+b+c)
=>1v(a+b)*(a+c)>=2(2a+b+c)
tương tự ta có 1v(a+b)*(b+c)>=2(2b+a+c)
=> 1/[v(a+b)*(a+c))+v(a+b)*(b+c))+1/(v(a+b)... >=2[1/(2a+b+c) + 1/(2b+a+c) + 1/(2c+a+b)] (2)
Từ (1) và (2) ta suy ra điều phải chứng minh.

tương tự ta có 1v(a+c)*(b+c)>=2(2c+a+b)

29 tháng 9 2019

c và d ở đâu vại:>

\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a^2+ab+b^2\right)\left(a-b\right)^2\ge0\)(đúng)

Đẳng thức xảy ra khi a= b

Ta có đpcm

7 tháng 6 2020

Câu 1: Bất phương trình nào sau đây là bất phương trình bậc nhất 1 ẩn:

A. 0x + 3 > 0

B. x^2 + 1 > 0

C. x + y < 0

D. 2x - 5 > 1

Câu 2: Cho bất phương trình: -5x + 10 > 0. Phép biến đổi đúng là:

A. 5x > 10

B. 5x > -10

C. 5x < 10

D. x < -10

Câu 3: Nghiệm của bất phương trình -2x > 10 là:

A. x > 5

B. x < -5

C. x > -5

D. x < 10

Câu 4: Cho |a|=3 với a < 0 thì:

A. a = 3

B. a = -3

C. a = +- 3

D. 3 hoặc -3

Câu 5: Cho a > b. Bất đẳng thức nào dưới đây đúng?

A. a + 2 > b + 2

B. -3a - 4 > -3b - 4

C. 3a + 1 < 3b + 1

D. 5a + 3 < 5b + 3

9 tháng 3 2019

(a^2+b^2)/2>=ab

<=>(a^2+b^2)>=2ab

 <=> a^2+2ab+b^2>=2ab 

<=>a^2+b^2>=0(luôn đúng)

=> điều phải chứng minh.

9 tháng 3 2019

Xét hiệu:  \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)

=>  \(a^2+b^2\ge2ab\)

Dấu "=" xra  <=>  a = b

Áp dụng ta có:

a)  \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)

dấu "=" xra  <=>  a = b = c = 1

b)  \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a.4b.4c.4d=256abcd\)

Dấu "=" xra  <=>  a = b= c = d = 2