K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2020

bbnfcfib hzj 65637664ytcfc byc vvh v

Nếu mà bạn giải Violympic thì có thể làm theo cách này :

Vì vai trò của x,y trong phép tính là như nhau

=> Amin <=> x=y

<=> x2=y2=0,5

<=> x=y=\(\sqrt{0.5}\)

=> Amin= \(2\sqrt{2}\)

P/s: đây là cách mình hay làm nhưng chỉ áp dụng được trên Violympic thoy

24 tháng 7 2019

Áp dụng BĐT cauchy-Schwarz dạng Engel ta thu được:

\(E\ge\frac{\left(a+b\right)^2}{a+b-2}=\frac{t^2}{t-2}\left(t=a+b>2\right)\)

Ta có: \(E\ge\frac{t^2}{t-2}+4\left(t-2\right)-4t+8\ge2\sqrt{\frac{t^2}{t-2}.4\left(t-2\right)}-4t+8\)

\(=4t-4t+8=8\)

Đẳng thức xảy ra khi a = b = 2 (chị tự giải kĩ ra nha)

24 tháng 7 2019

Áp dụng bđt Cô si ta có:

\(E=\frac{a^2}{b-1}+\frac{b^2}{a-1}\ge2\sqrt{\frac{a^2}{a-1}.\frac{b^2}{b-1}}\)

Mặt khác:\(\frac{a^2}{a-1}=\frac{a^2-4a+4+4a-4}{a-1}=\frac{\left(a-2\right)^2}{a-1}+4\ge4\)

Tương tự: \(\frac{b^2}{b-1}\ge4\).Nhân theo vế suy ra \(E\ge8\)

\("="\Leftrightarrow a=b=2\)

7 tháng 9 2015

Từ giả thiết suy ra \(3\left(a^2b^2+b^2c^2+c^2a^2\right)\le\left(a^2+b^2+c^2\right)^2=9\to a^2b^2+b^2c^2+c^2a^2\le3.\)

Theo bất đẳng thức Cauchy-Schwart ta có \(\frac{a^3}{\sqrt{b^2+3}}+\frac{b^3}{\sqrt{c^2+3}}+\frac{c^3}{\sqrt{a^3+3}}\ge\frac{4a^4}{a^2b^2+3a^2+4}+\frac{4b^4}{b^2c^2+3b^2+4}+\frac{4c^4}{c^2a^2+3c^2+4}\)
\(\ge\frac{4\left(a^2+b^2+c^2\right)^2}{\left(a^2b^2+b^2c^2+c^2a^2\right)+3\left(a^2+b^2+c^2\right)+12}\ge\frac{4\times3^2}{3+3\cdot3+12}=\frac{3}{2}.\)
Dấu bằng xảy ra khi \(a=b=c=1\to\) giá trị bé nhất của P là \(\frac{3}{2}.\)

16 tháng 4 2018
  • bạn ghi rõ cái phần bất đẳng thức cauchy đc ko mk ko hiểu
2 tháng 3 2017

\(P=\frac{a^3}{a^2+2b^2}+\frac{b^3}{b^2+2a^2}\)
\(\Leftrightarrow P=a-\frac{2ab^2}{a^2+2b^2}+b-\frac{2a^2b}{b^2+2a^2}\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\hept{\begin{cases}a^2+2b^2\ge2\sqrt{2a^2b^2}=2ab\sqrt{2}\\b^2+2a^2\ge2\sqrt{2a^2b^2}=2ab\sqrt{2}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{2ab^2}{a^2+2b^2}\le\frac{2ab^2}{2ab\sqrt{2}}=\frac{b}{\sqrt{2}}\\\frac{2a^2b}{b^2+2a^2}\le\frac{2a^2b}{2ab\sqrt{2}}=\frac{a}{\sqrt{2}}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a-\frac{2ab^2}{a^2+2b^2}\ge a-\frac{b}{\sqrt{2}}\\b-\frac{2a^2b}{b^2+2a^2}\ge b-\frac{a}{\sqrt{2}}\end{cases}}\)

\(\Rightarrow a-\frac{2ab^2}{a^2+2b^2}+b-\frac{2a^2b}{b^2+2a^2}\ge a+b-\left(\frac{a+b}{\sqrt{2}}\right)\)

\(\Rightarrow a-\frac{2ab^2}{a^2+2b^2}+b-\frac{2a^2b}{b^2+2a^2}\ge\frac{\left(2-\sqrt{2}\right)\left(a+b\right)}{2}\)

Ta có  \(\sqrt{\left(a+2\right)\left(b+2\right)}\ge9\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow9\le\sqrt{\left(a+2\right)\left(b+2\right)}\le\frac{a+b+4}{2}\)

\(\Rightarrow9\le\frac{a+b+4}{2}\)

\(\Rightarrow a+b\ge14\)

\(\Rightarrow\frac{\left(2-\sqrt{2}\right)\left(a+b\right)}{2}\ge14-7\sqrt{2}\)

\(\Rightarrow a-\frac{2ab^2}{a^2+2b^2}+b-\frac{2a^2b}{b^2+2a^2}\ge14-7\sqrt{2}\)

\(\Rightarrow P\ge14-7\sqrt{2}\)

Vậy GTNN của \(P=14-7\sqrt{2}\)

2 tháng 3 2016

ko dc

k dung cho mik hả