K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2016

dùng bđt cô-si

G=a+b >= 2\(\sqrt{ab}\)=10

dấu = xảy ra <=> a=b=5

23 tháng 4 2016

a.b=25 > a=25/b
G= a+b = a+b 
= 25/b + b 
= 25 + b^2 >= 25
Vậy giá trị nn của biểu thức là 25 khi b^2=0 
 

20 tháng 6 2018

a, Ta có :

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)

\(\Rightarrow(a+b)^2\ge4ab\)

\(\Rightarrow(a-b)^2\ge0(đpcm)\)

Mình để cho dấu lớn bằng để dễ hiểu nha bạn

c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)

Dấu " = "xảy ra  khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)

Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm

Còn câu b và d bạn tự làm nhé

Chúc bạn học tốt

20 tháng 6 2018

\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)

dấu ''='' xảy ra khi và chỉ khi a=b

\(b,x+\frac{1}{x}\ge2\)

\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)

\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)

dấu''='' xảy ra khi và chỉ khi x=1

áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên)  =>GTNN là 2 

dấu ''='' xay ra khi và chỉ khi x=1

\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)

=> GTNN là 1 tại x=2

\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)

vì -(x+2 )-6 <-6

5 tháng 3 2016

câu 2 min là 2 đấy bạn

5 tháng 3 2016

Câu 1:

P=(x - 1)(x - 3)(x - 4)(x - 6) + 5

P=(x - 1)(x - 6)(x - 3)(x - 4) +5

P=(x^2 - 7x + 6)(x^2 - 7x + 12)+5

Dặt x^2 - 7x + 9 là a, ta có:

P=(a + 3)(a - 3)+5

P=a^2 - 4

=>Pmin= -4

Câu 2:

Q=(a + b)(1/a + 1/b)

Q=a/a + a/b + b/a + b/b

Q=2 + (a/b + b/a)

Gọi a/b là x, ta có:

(x - 1)^2 lớn hơn hoặc băng 0 =>x^2 - 2x + 1 lớn hơn hoặc băng 0

=>x^2 + 1 lớn hơn hoặc băng 2x => x(x + 1/x) lớn hơn hoặc băng 2x

=>x + 1/x lớn hơn hoặc băng 2 =>Min x + 1/x = 2

Có: a/b+b/a = x + 1/x

=>Qmin=2 + 2=4

Mình giải câu 2 hơi dài dòng bạn thông cảm nha. Cảm ơn!

21 tháng 3 2018

Từng câu thôi bạn!

Ta có: a+b+c=0

a3 + a2c - abc + b2c + b3

=(a3+a2b+a2c)-(a2b+ab2+abc)+(b2c+b3+ab2)

=a2(a+b+c)-ab(a+b+c)+b2(a+b+c)

=0

20 tháng 4 2017

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a+b+c\right)\dfrac{9}{a+b+c}=9\)

Y
9 tháng 5 2019

\(A=\left(a+\frac{1}{a}-2\right)+\left(b+\frac{1}{b}-2\right)+\left(c+\frac{1}{c}-2\right)-\left(a+b+c\right)+6\)

\(A=\frac{a^2-2a+1}{a}+\frac{b^2-2b+1}{b}+\frac{c^2-2c+1}{c}-3+6\)

\(A=\frac{\left(a-1\right)^2}{a}+\frac{\left(b-1\right)^2}{b}+\frac{\left(c-1\right)^2}{c}+3\) \(\ge3\forall a,b,c>0\)

A = 3 \(\Leftrightarrow a=b=c=1\)

Vậy min A = 3 \(\Leftrightarrow a=b=c=1\)

9 tháng 5 2019

\(3A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge9\) (bđt AM-GM)

\(\Rightarrow3A\ge9\Leftrightarrow A\ge3\)

\("="\Leftrightarrow a=b=c=1\)

//Điểm rơi : x=2 và y=4

Ta có : \(A=3a+2b+\frac{6}{a}+\frac{8}{b}\)

\(=\left(\frac{3a}{2}+\frac{6}{a}\right)+\left(\frac{b}{2}+\frac{8}{b}\right)+\frac{3}{2}\left(a+b\right)\)

\(\ge2\sqrt{\frac{3a}{2}.\frac{6}{a}}+2\sqrt{\frac{b}{2}.\frac{8}{b}}+\frac{3}{2}.6\)

\(=2\sqrt{9}+2\sqrt{4}+9\)

\(=2.3+2.2+9=19\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{3a}{2}=\frac{6}{a}\\\frac{b}{2}=\frac{8}{b}\\a+b=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=4\end{cases}}\)

Vậy \(A_{min}=19\Leftrightarrow\hept{\begin{cases}a=2\\b=4\end{cases}}\)

13 tháng 7 2023

Cho mình hỏi làm thế nào để chọn điểm rơi ạ?( thật sự mình rất cần)