Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho a>0,b>0 và S=2a^2+b^2+4/a+54/b. Khi biểu thức S đạt giá trị nhỏ nhất thì T=a+2b có giá trị bằng?
Cho mình hỏi, phân thức cuối cùng của câu a phải là \(\frac{1}{c+2a+b}\)chứ
\(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)
\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)
\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(b-\frac{b}{2}\right)^2\ge0\)
Hay \(ab\le2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\b=\frac{b}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)
\(\sqrt{xy}\le\frac{x+y}{2}=\frac{2a}{2}=a\Rightarrow xy\le a^2\)
Ta có : \(A=\frac{x+y}{xy}\ge\frac{2a}{a^2}=\frac{a}{2}\)
Dấu "=" xảy ra khi x = y = a
vậy ....
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P=\frac{1}{2a-a^2}+\frac{1}{2b-b^2}+\frac{1}{2c-c^2}\)
\(\ge\frac{\left(1+1+1\right)^2}{2\left(a+b+c\right)-\left(a^2+b^2+c^2\right)}\)
\(=\frac{9}{2-\left(a^2+b^2+c^2\right)}\ge\frac{9}{2-\frac{\left(a+b+c\right)^2}{3}}\)
\(=\frac{9}{2-\frac{1}{3}}=\frac{9}{\frac{5}{3}}=\frac{27}{5}\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)
Bạn nên viết lại đề bằng công thức toán để mọi người iheeur đề của bạn hơn nhé.
Áp dụng bất đẳng thức \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) ta có :
\(\frac{ab}{a+3b+2c}=\frac{ab}{9}\cdot\frac{9}{a+3b+2c}=\frac{ab}{9}\cdot\frac{9}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}\cdot\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
\(=\frac{1}{9}\cdot\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{ab}{2b}\right)=\frac{1}{9}\cdot\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)
Từ đó suy ra \(A\le\frac{1}{9}\cdot\Sigma\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)=\frac{1}{9}\cdot\left(a+b+c+\frac{a+b+c}{2}\right)\)
\(=\frac{1}{9}\cdot\frac{3\left(a+b+c\right)}{2}=\frac{1}{9}\cdot\frac{3\cdot6}{2}=1\)
Vậy \(maxA=1\Leftrightarrow a=b=c=2\)
Áp dụng AM-GM có:
\(2a^2+\dfrac{2}{a}+\dfrac{2}{a}\ge3\sqrt[3]{2a^2.\dfrac{2}{a}.\dfrac{2}{a}}=6\)
\(b^2+\dfrac{27}{b}+\dfrac{27}{b}\ge3\sqrt[3]{b^2.\dfrac{27}{b}.\dfrac{27}{b}}=27\)
Cộng vế với vế => \(S\ge33\)
Dấu = xảy ra <=> a=1; b=3
=>T= a+2b=7