Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(x=\frac{3}{2}\) và \(n=2\) BĐT sai
Nói chung với \(\left\{{}\begin{matrix}n\ge1\\1< x< 2\end{matrix}\right.\) thì BĐT này luôn sai
Đáp án c) nhé em.
x-2<=0 => x<=2
x2(x-2)<=0 => x=0 hoặc x-2<=0 => x<=2
Em mới học lớp 6 thôi ạ! Xin lỗi nhiều vì không giúp được!
\(A\left(2;3\right)\) \(\Rightarrow\) I thuộc đường thẳng d' qua A vuông góc \(\Delta\)
Phương trình d':
\(2\left(x-2\right)-1\left(y-3\right)=0\Leftrightarrow2x-y-1=0\)
Gọi \(I\left(a;2a-1\right)\) \(\Rightarrow IA=\sqrt{\left(a-2\right)^2+\left(2a-4\right)^2}=\sqrt{5\left(a-2\right)^2}\)
Gọi H là trung điểm BC, do IBC vuông cân tại I \(\Rightarrow IH\perp BC\Rightarrow IH=d\left(I;d\right)\)
Mặt khác IH là trung tuyến ứng với cạnh huyền tam giác vuông cân
\(\Rightarrow IH=\frac{IB\sqrt{2}}{2}=\frac{IA\sqrt{2}}{2}\Leftrightarrow d\left(I;d\right)=\frac{IA\sqrt{2}}{2}\)
\(\Leftrightarrow\frac{\left|3a-\left(2a-1\right)-9\right|}{\sqrt{3^2+\left(-1\right)^2}}=\frac{\sqrt{10\left(a-2\right)^2}}{2}\)
\(\Leftrightarrow\left|a-8\right|=5\sqrt{\left(a-2\right)^2}=5\left|a-2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}a-8=5a-10\\a-8=10-5a\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{1}{2}\\a=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(\frac{1}{2};0\right)\\I\left(3;5\right)\end{matrix}\right.\)
Có 2 đường tròn thỏa mãn: \(\left[{}\begin{matrix}\left(x-\frac{1}{2}\right)^2+y^2=\frac{45}{4}\\\left(x-3\right)^2+\left(y-5\right)^2=5\end{matrix}\right.\)
Bạn kiểm tra lại tính toán
\(A=\left\{x\in Z/-2\le x\le5\right\}=\left[-2;5\right]\)
\(B=\){x∈Z/3/2 </x/≤5}= nửa đoạn 3/2;5
a) Từ giả thiết => a1+a2+a3<3a3
a4+a5+a6<3a6
a7+a8+a8<3a9
=>\(a_1+a_2+...+a_9< 3\left(a_3+a_6+a_9\right)\Leftrightarrow\dfrac{a_1+a_2+...+a_9}{a_3+a_6+a_9}< 3\left(ĐPCM\right)\)
b)Câu này phải là \(\ge\) chứ không phải > nha bạn:
Ta có:
(a-b)2\(\ge\)0 với mọi ab
<=>a2+b2\(\ge\)2ab(1) với mọi ab
Dấu "=" xảy ra khi và chỉ khi (a-b)2=0 <=> a=b
Chứng minh tương tự ta được a2+1\(\ge\)2a(2) ; b2+1\(\ge\)2b(3)
Dấu "=" xảy ra khi và chỉ khi a=1 ; b=1
Cộng vế với vế của (1);(2) và (3):
2(a2+b2+1)\(\ge\)2(ab+a+b)
<=> a2+b2+1\(\ge\)ab+a+b
Dấu bằng xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}a=b\\b=1\\a=1\end{matrix}\right.\Leftrightarrow}a=b=1\)
|x|<a
nên \(x^2< a^2\)
hay -a<x<a