K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

a^2 + b^2 >= 2ab

<=> a^2 + b^2 - 2ab >= 0

<=> (a - b)^2 >= 0 là BĐT đúng 

=> a^2 + b^2 >= 2ab là BĐT đúng

24 tháng 3 2018

cau c

24 tháng 3 2018

e lạy cj

7 tháng 4 2019

\(C=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

\(D< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)

\(\Rightarrow D< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(\Rightarrow D< 1-\frac{1}{2017}< 1\)

Vậy C > D

28 tháng 11 2016

Ta có: \(\frac{a+b}{3}=\frac{b+c}{4}=\frac{c+a}{5}=\frac{a+b+b+c+c+a}{3+4+5}=\frac{2.\left(a+b+c\right)}{12}\)

                                                                                                            \(=\frac{a+b+c}{6}\)

\(\Rightarrow\) Thay M vào tính

4 tháng 12 2016

Thay M vao tinh sao vay

13 tháng 6 2018

Bài 1:

Ta có:

\(\dfrac{a}{b}>\dfrac{c}{d}\)

\(\Leftrightarrow\dfrac{a.d}{b.d}>\dfrac{b.c}{b.d}\left(b;d>0\right)\)

\(\Leftrightarrow ad>bc\)

Vậy ...

Bài 2:

Ta có:

\(0< a< 5< b\)

\(\Leftrightarrow a;b>0\)

\(\Leftrightarrow\dfrac{b}{a}>0\)

\(a< 5< b\)

\(\Leftrightarrow a< b\)

\(\Leftrightarrow\dfrac{b}{a}>1\)

Vậy ...

20 tháng 12 2018

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=2\)

\(\Leftrightarrow a+b=2c=b+c=2a=a+c=2b\Rightarrow a=b=c\)

\(M=\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)=2^3=8\)

24 tháng 2 2017

Ta có:

\(2\left(a^2+b^2\right)=5ab\)

\(\Leftrightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\)

\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow a=2b\) hay \(b=2a\)

\(a>b>c\Leftrightarrow a=2b\)

\(\Leftrightarrow\frac{3a-b}{2a+b}=\frac{3.2b-b}{2.2b+b}=\frac{5b}{5b}=1\)

Vậy \(\frac{3a-b}{2a+b}=1\)

Bài 1:

Ta có:

\(\frac{a}{b+1}+\frac{-a}{b}=\frac{a}{b+1}-\frac{a}{b}=\frac{ab-a\left(b+1\right)}{\left(b+1\right)b}=\frac{ab-ab-a}{b^2+b}=\frac{-a}{b^2+b}\left(đpcm\right)\)

Bài 2:

Ta có:

\(a^2\ge0\Rightarrow a^2+2015>0\)

⇒Để M>0 thì \(a-2014>0\Rightarrow a>2014\)

Vậy để M=\(\left(a^2+2015\right)\left(a-2014\right)>0\) thì a>2014