K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2015

(a+b)(1/a+1/b)=1+a/b+b/a+1

vì a/b+b/a >= 2căn(a/b*b/a) 

    a/b+b/a >= 2

     a/b+b/a +1+1 >= 2+1+1

     (a+b)(1/a+1/b) >= 4

 

7 tháng 4 2019

Vì a, b >0 nên áp dụng bất đẳng thức Cô - si , ta có

\(a+b\ge2\sqrt{ab}\)(1)

Mad a,b >0 \(\Rightarrow\frac{1}{a},\frac{1}{b}\)cũng lớn hơn 0 , áp dụng Cô - si ta có

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{a}.\frac{1}{b}}=2\sqrt{\frac{1}{ab}}=\frac{2}{\sqrt{ab}}\)(2)

Từ (1) và (2) ta có :

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}.\frac{2}{\sqrt{ab}}\)=\(4\)

Vậy \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\left(đpcm\right)\)

Cứ có bài toán nào đề bài cho là lớn hơn 0 thì cậu nghĩ ngay tới cô si nhé

7 tháng 4 2019

áp dụng bất đẳng thức cô si ta có 

a2+ b2 \(\ge\)2ab 

\(\Rightarrow a^2+b^2+2ab\ge4ab\Rightarrow\frac{a^2+2ab+b^2}{ab}\ge\frac{4ab}{ab}\)\(\Rightarrow\frac{a^2+2ab+b^2}{ab}\ge4\)\(\Rightarrow\left(a+b\right)\left(\frac{a+b}{ab}\right)\ge4\)

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)   ( ĐPCM)

26 tháng 3 2017

dot qua

26 tháng 3 2017

ko dc dau

27 tháng 5 2016

1/a+1/b>=4/a+b 
<=> (a+b)/ab>=4/(a+b) 
<=> (a+b)^2 >=4ab 
<=> a^2 +2ab +b^2 - 4ab>=0 
<=> (a-b)^2>=0 => đpcm 

II>> 

a^3+b^3>=ab(a+b) 
<=> (a+b)(a^2 -ab+b^2)>=ab(a+b) 
<=> a^2 -ab+b^2>=ab 
<=> (a-b)^2 >=0 => đpcm

27 tháng 5 2016

Vì a>0 và b>0 nên ta áp dụng bất đẳng thức cosi ta có:

\(\frac{1}{a}\)+\(\frac{1}{b}\)\(\ge\)2\(\sqrt{\frac{1}{ab}}\) (1)

a+b\(\ge\)2\(\sqrt{ab}\) (2)

nhân vế với vế của (1) và (2) ta có:

(\(\frac{1}{a}\)+\(\frac{1}{b}\))(a+b)\(\ge\)2\(\sqrt{\frac{1}{ab}}\).2\(\sqrt{ab}\)

=>(\(\frac{1}{a}\)+\(\frac{1}{b}\))(a+b)\(\ge\)4

dấu = xảy ra khi a=b

4 tháng 7 2017

Bất phương trình bậc nhất một ẩn

Số \(ab>0\), nên \(\dfrac{1}{ab}>0\). Từ \(a>b\), nhân cả hai vế của bất đẳng thức với số \(\dfrac{1}{ab}\), có bất đẳng thức \(\dfrac{1}{a}< \dfrac{1}{b}\)

24 tháng 3 2018

\(\dfrac{1}{a}< \dfrac{1}{b}\)

\(\Leftrightarrow ab\cdot\dfrac{1}{a}< ab\cdot\dfrac{1}{b}\)(nhân cả hai vế với ab>0)

\(\Leftrightarrow b< a\)(luôn đúng)

=>đpcm

4 tháng 1 2018

Ta cần chứng minh BĐT phụ sau là : Với x,y>0 thì \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow y\left(x+y\right)+x\left(x+y\right)\ge4xy\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )

dấu = xảy ra <=> x=y

Áp dụng BĐT phụ đó , ta có \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+2}=\frac{4}{3}\)

dấu = xảy ra <=>a=b=1/2

4 tháng 1 2018

\(\frac{1}{a+1}+\frac{1}{b+1}=\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}=\frac{1+1+1}{ab+a+b+1}=\frac{3}{ab+1+1}\)

\(=\frac{3}{a\left(1-a\right)+2}=\frac{3}{a-a^2+2}=\frac{3}{-\left(a^2-a+\frac{1}{4}\right)+\frac{9}{4}}=\frac{3}{-\left(a-\frac{1}{2}\right)^2+\frac{9}{4}}\)

\(\ge\frac{3}{\frac{9}{4}}=\frac{4}{3}\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

10 tháng 5 2017

áp dụng BĐT cô si, ta có:

\(\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\\\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}\end{matrix}\right.\) nhân 2 vé với nhau, ta được:

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\sqrt{\dfrac{1}{ab}.ab}=4\left(đpcm\right)\)

20 tháng 3 2018

2.

\(\dfrac{\left(a+b\right)^2}{2}\ge2ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( đúng )

Tương tự.......................

20 tháng 3 2018

1. Xét hiệu : \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{b-a}{ab}\)

Lại có: b - a < 0 ( a > b)

ab >0 ( a>0, b > 0)

\(\Rightarrow\dfrac{b-a}{ab}< 0\)

Vậy: \(\dfrac{1}{a}< \dfrac{1}{b}\)

2. Xét hiệu : \(\dfrac{\left(a+b\right)^2}{2}-2ab=\dfrac{a^2+2ab+b^2-4ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)

Vậy : \(\dfrac{\left(a+b\right)^2}{2}\ge2ab\) Xảy ra đẳng thức khi a = b

3. Xét hiệu : \(\dfrac{a^2+b^2}{2}-ab=\dfrac{a^2+b^2-2ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)

Vậy : \(\dfrac{a^2+b^2}{2}\ge ab\) Xảy ra đẳng thức khi a = b