K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

ai làm giúp cái đi, hu hu...

21 tháng 3 2020

21 tháng 3 2020

Bạn tham khảo nha, không hiểu thì hỏi mình

23 tháng 11 2014

Đặt A =(n2 +n -1)2 - 1

A = (n2 +n -1 +1)(n2 +n -1 -1) = (n2 +n)(n2 +n -2) = n(n +1)(n2 + 2n -n -2) 

= n(n +1)((n -1)(n +2) = tích 4 số liên tiếp nên chia hết cho 24.

24 tháng 3 2017

Giải:

Nếu \(n=2k\)\((k\) \(\in N\)*\()\) thì:

\(19.8^{2k}+17=18.8^{2k}+\left(1+63\right)^k+\left(18-1\right)\)\(\equiv0\) (\(mod\) \(3\))

Nếu \(n=4k+1\) thì:

\(19.8^{4k+1}+17=13.8^{4k+1}+6.8.64^{2k}+17\)

\(=13.8^{4k+1}+39.64^{2k}+9\left(1-65\right)^{2k}+\left(13+4\right)\equiv0\) (\(mod\) \(13\) )

Nếu \(n=4k+3\) thì:

\(19.8^{4k+3}+17=15.8^{4k+3}+4.8^3.64^{2k}+17\)

\(=15.8^{4k+3}+4.510.64^{2k}+4.2\left(1-65\right)^{2k}+\left(25-8\right)\equiv0\) (\(mod\) \(5\))

Vậy \(\forall n\in N\)* \(,n>1\) thì \(19.8^n+17\) là hợp số (Đpcm)

24 tháng 3 2017

à , nếu n = 4k + 2 thì s bn ?