K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2017

Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng:

\(\frac{a^3}{c^3}=\frac{\left(2a-b\right)^3+b^3}{\left(2c-d\right)^3+d^3}\)

BÀI LÀM:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có: \(\frac{\left(2a-b\right)^3+b^3}{\left(2c-d\right)^3+d^3}=\frac{\left(2bk-b\right)^3+b^3}{\left(2dk-d\right)^3+d^3}=\frac{b^3.\left(2k-1\right)^3+b^3}{d^3.\left(2k-1\right)^3+d^3}=\frac{b^3.\left[\left(2k-1\right)^3+1\right]}{d^3.\left[\left(2k-1\right)^3+1\right]}=\frac{b^3}{d^3}\left(1\right)\)

Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{c^3}{d^3}\left(2\right)\)

Từ (1) và (2) =>  \(\frac{a^3}{c^3}=\frac{\left(2a-b\right)^3+b^3}{\left(2c-d\right)^3+d^3}\left(đpcm\right)\)

6 tháng 8 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b-c}{b+c-d}\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}=\left(\dfrac{a+b-c}{b+c-d}\right)^3\left(1\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow\dfrac{a}{b}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\dfrac{a+b-c}{b+c-d}\right)^3\)

Vậy \(\dfrac{a}{b}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\dfrac{a+b-c}{b+c-d}\right)^3\left(dpcm\right)\)

6 tháng 8 2018

thanks bạn

22 tháng 9 2019

Ta có a/c=c/b=b/d

⟹a3 /c3=c3/b3=b3/d3=a3+c3-d3/c3+b3-d3

mà a3/c3=a/c.c/b.b/d=a/d

⟹a3+c3-d3/c3+b3-d3=a/d

9 tháng 7 2018

P/s : 

Đề thiếu rồi bạn ơi : 

~