K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2018

Có \(\frac{a}{b}=\frac{b}{c}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)

Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow a=c.k;b=d.k\)

\(\Rightarrow a^2=c^2.k^2;b^2=d^2.k^2\)

Khi đó \(\frac{a^2+c^2}{b^2+d^2}=\frac{c^2.k^2+c^2}{d^2.k^2+d^2}=\frac{c^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{c^2}{d^2}=\frac{a^2}{b^2}\)

29 tháng 12 2018

\(\frac{a}{c}=\frac{c}{b}\Leftrightarrow a\cdot b=c\cdot c\)

\(\Rightarrow c^2=ab\)

Ta có :

\(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\left(đpcm\right)\)

5 tháng 7 2017

khó thế

29 tháng 5 2018

Đặt \(S=a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\)

Từ giả thiết: \(a+b+c=0\Rightarrow b+c=-a;c+a=-b;a+b=-c.\)

Thay vào biểu thức S, ta có:

\(S=a^2.\left(-a\right)+b^2.\left(-b\right)+c^2.\left(-c\right)=-a^3-b^3-c^3\)

\(S=-\left(a^3+b^3+c^3\right)=-\left[\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]\)

\(S=-\left[0-3\left(-c\right).\left(-a\right).\left(-b\right)\right]\)(Do a+b+c=0 và a+b=-c; b+c=-a; a+b=-c)

\(S=-\left[-3.\left(-abc\right)\right]=-\left(3abc\right)\)

Thay \(abc=-15\)vào biểu thức S: \(S=-\left[3.\left(-15\right)\right]=-\left(-45\right)=45.\)

ĐS: \(S=45.\)

22 tháng 10 2019

\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

=> \(\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}=\frac{-b\left(a-b\right)-c\left(c-a\right)}{\left(c-a\right)\left(a-b\right)}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(c-a\right)}\)

Nhân cả hai vế với \(\frac{1}{b-c}\)

=> \(\frac{a}{\left(b-c\right)^2}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Tương tự: \(\frac{b}{\left(c-a\right)^2}=\frac{-bc+c^2-a^2+ba}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

                  \(\frac{c}{\left(a-b\right)^2}=\frac{-ca+a^2-b^2+cb}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Cộng vế với vế ta có:

\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}\)

\(=\frac{-ab+b^2-c^2+ac-bc+c^2-a^2+ba-ca+a^2-b^2+cb}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

Vậy ta có điều phải chứng minh.

26 tháng 9 2017

Yêu cầu đề là gì vậy bn ???????????????

26 tháng 9 2017

Đề yêu cầu là chứng minh nhé mấy bạn!!!!!!!

26 tháng 8 2019

help

8 tháng 11 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Khi đó : \(\frac{ac}{a^2+c^2}=\frac{bk.dk}{\left(bk\right)^2+\left(dk^2\right)}=\frac{k^2.bd}{k^2\left(b^2+d^2\right)}=\frac{bd}{b^2+d^2}\)

\(\Rightarrow\frac{ac}{a^2+c^2}=\frac{bd}{b^2+d^2}\left(đ\text{pcm}\right)\)