K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

Do \(b^2=ac\)

=>\(\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}\)

                     =\(\frac{a\left(a+c\right)}{c\left(a+c\right)}\)

                      \(\frac{a}{c}\)

10 tháng 8 2015

Vì a+b<a+b+c=>a/a+b>a/a+b+c

Vì b+c<a+b+c=>b/b+c>b/a+b+c

Vì c+a<a+b+c=>c/c+a>c/a+b+c

=>a/a+b+b/b+c+c/c+a>a/a+b+c+b/a+b+c+c/a+b+c=(a+b+c)/(a+b+c)=1

=>a/a+b+b/b+c+c/c+a>1

=>ĐPCM

27 tháng 1 2019

\(b,a^2+b^2=c^2+d^2\)

\(\Rightarrow a^2+b^2+c^2+d^2=2c^2+2d^2⋮2\)

Xét \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)

\(\Rightarrow\left(a^2-a\right)+\left(b^2-b\right)+\left(c^2-c\right)+\left(d^2-d\right)\)

Ta có \(a^2-a=\left(a-1\right)a⋮2\)(vì tích của 2 số nguyên liên tiếp)

Tương tự ta có \(\left(b^2-b\right)⋮2;\left(c^2-c\right)⋮2;\left(d^2-d\right)⋮2\)

\(\Rightarrow\left(a^2-a\right)+\left(b^2-b\right)+\left(c^2-c\right)+\left(d^2-d\right)⋮2\)

\(\Rightarrow\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)⋮2\)

mà \(a^2+b^2+c^2+d^2⋮2\)nên \(a+b+c+d⋮2\)

Câu a để nghĩ tiếp 

27 tháng 1 2019

bn làm câu b được không

19 tháng 7 2018

a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(1\right)\)

\(\frac{a^2}{c^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\left(2\right)\)

Từ (1) và (2) => đpcm

b, Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

Có: \(\left(\frac{a-b}{c-d}\right)^2=\left(\frac{bk-b}{dk-d}\right)^2=\left[\frac{b\left(k-1\right)}{d\left(k-1\right)}\right]^2=\left(\frac{b}{d}\right)^2\left(1\right)\)

\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\left(2\right)\)

Từ (1) và (2) => đpcm