Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\left(x-4\right)\left(x-2\right)-\left(x-1\right)\left(x-3\right)\)
\(A=\left(x^2-4x-2x+8\right)-\left(x^2-x-3x+4\right)\)
\(A=\left(x^2-6x+8\right)-\left(x^2-4x+4\right)\)
\(A=x^2-6x+8-x^2+4x-4\)
\(A=-2x+4\)
Thay \(x=1\dfrac{3}{4}=\dfrac{7}{4}\) vào A ta được:
\(A=-2.\dfrac{7}{4}+4\)
\(A=-\dfrac{7}{2}+4\)
\(A=\dfrac{1}{2}\)
Trả lời tội ghê đó bạn nhưng mk gửi một bài mà sao bạn trả lời một câu vậy bạn nhưng dù sao vẫn cảm on nha
\(A=\frac{3}{2-x}+\frac{3}{x+2}+\frac{3x^2}{x^2-4}\)
\(A=\frac{-3}{x-2}+\frac{3}{x+2}+\frac{3x^2}{\left(x+2\right)\left(x-2\right)}\)
\(A=\frac{-3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3x^2}{\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{-3x-6+3x-6+3x^2}{\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{-12+3x^2}{\left(x-2\right)\left(x+2\right)}=\frac{3\left(-4+x^2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{3\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(A=3\)
\(a,A=\frac{3}{2-x}-\frac{3}{x+2}+\frac{3x^2}{x^2-4}\)
\(=\frac{-3\left(x+2\right)-3\left(x-2\right)+3x^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{-3x-6-3x+6+3x^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{3x^2-6x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{3x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{3x}{x+2}\)
\(b,ĐKXĐ:\hept{\begin{cases}x-2\ne0\\x+2\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne\pm2\\x\ne-1\end{cases}}}\)
Ta có : \(P=A:B=\frac{3x}{x+2}:\frac{x+1}{x+2}\)
\(=\frac{3x}{x+2}.\frac{x+2}{x+1}\)
\(=\frac{3x}{x+1}\)
\(=\frac{3x+3}{x+1}-\frac{3}{x+1}\)
\(=3-\frac{3}{x+1}\)
Để P nguyên thì \(3-\frac{3}{x+1}\inℤ\)
\(\Leftrightarrow\frac{3}{x+1}\inℤ\)
Vì \(x\inℤ\Rightarrow x+1\inℤ\)
Ta có bảng :
x + 1 | -3 | -1 | 1 | 3 |
x | -4 | -2 | 0 | 2 |
Vậy \(x\in\left\{-4;-2;0;2\right\}\)
Dễ chỉ ra được: 12(x^2 + y^2) = 25xy
suy ra 12 x^2 + 12 y^2 = 25xy khi đó ta được:
12(x+y)^2 = 49xy hay tìm ra được (x+y)^2 = 49xy/12
Tương tự tìm được (x-y)^2 = xy/12
thay vào A ta có: A^2 = 1/49, hay A = 1/7 hoặc A= -1/7
xin lỗi em mới học lớp 6 vào chtt nha tick mình nha các bạn của mình
12/
x=2011
=>2012=x+1
thay x+1=2012 ta được:
x2011-(x+1).x2010+(x+1).x2009-(x+1)x2008+...-(x+1).x2+(x+1).x-1
=x2011-x2011-x2010+x2010+x2009-x2009-x2008+...-x3-x2+x2+x-1
=x-1
thay x=2011 ta được:
2011-1=2010
Vậy x2011-2012x2010+2012x2009-2012x2008+...-2012x2+2012x-1=2010
Ta có: a3+b3+c3=3abc <=> a3+b3+c3-3abc=0
<=>\(a^3+3a^2b+3ab^2+b^3+c^3-3ab\left(a+b\right)-3abc=0\)
<=>\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
<=>\(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
<=>\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
<=>\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Mà a+b+c khác 0
=>\(a^2+b^2+c^2-ab-bc-ca=0\)
<=>\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
<=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
<=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
<=>\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}}a=b=c}\)
=>\(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)
Ta có : \(a+b=x\Rightarrow a^2+2ab+b^2=x^2\Rightarrow a^2+b^2=x^2-2y\)
\(\Rightarrow a^2+b^2-2ab=x^2-2y-2y=x^2-4y\Rightarrow\left(a-b\right)^2=x^2-4y\Rightarrow a-b=\sqrt{x^2-4y}\)
1 . \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)=\sqrt{x^2-4y}\left(x^2-2y+y\right)=\sqrt{x^2-4y}\left(x^2-y\right)\)
2 . \(a^4-b^4=\left(a^2-b^2\right)\left(a^2+b^2\right)=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)=x\sqrt{x^2-4y}\left(x^2-2y\right)\)
a+b=x hay a-b=x vậy bạn