K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

Đặt 2a + b = 7k chia hết cho 7 => (2a + b)2 = 49k2 chia hết cho 49

(2a + b)2 = 4a2 + 4ab + b2 chia hết cho 49

4a2 + 4ab + b2 - (3a2 +10ab - 8b2) = a2 - 6ab +9b2 = (a - 3b)2

Ta có 2a + b chia hết cho 7 nên 3(2a + b) = 6a + 3b chia hết cho7

Ta có 6a + 3b + (a - 3b) = 7a chia hết cho 7 mà 6a + 3b chia hết cho 7 => a - 3b chia hết cho 7

a - 3b chia hết cho 7 => (a - 3b)2 chia hết cho 49

=> 4a2 + 4ab + b2 - (3a2 + 10ab - 8b2) chia hết cho 49

mà 4a2 + 4ab + b2 chia hết cho 49 => 3a2 + 10ab - 8b2 chia hết cho 49

4 tháng 8 2016

a, n3 + 5

= n3 - n + 6n

= n.(n2 - 1) + 6n

= n.(n - 1).(n + 1) + 6n

Vì n.(n - 1).(n + 1) là tích 3 số tự nhiên liên tiếp => n.(n - 1).(n + 1) chia hết cho 2 và 3

Mà (2,3)=1 => n.(n - 1).(n + 1) chia hết cho 6, 6n chia hết cho 6

=> n3 + 5n chia hết cho 6 ( đpcm)

4 tháng 8 2016

a, n3 + 5

= n3 - n + 6n

= n.(n2 - 1) + 6n

= n.(n - 1).(n + 1) + 6n

Vì n.(n - 1).(n + 1) là tích 3 số tự nhiên liên tiếp => n.(n - 1).(n + 1) chia hết cho 2 và 3

Mà (2,3)=1 => n.(n - 1).(n + 1) chia hết cho 6, 6n chia hết cho 6

=> n3 + 5n chia hết cho 6 ( đpcm)

7 tháng 9 2020

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )