Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)
=> a = b = c
b)
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)
=> x = y = z (theo a)
Thay x = y = z vào biểu thức, ta có:
\(M=\dfrac{x^{333}.x^{666}}{x^{999}}=1\)
c)
\(ac=b^2\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)
\(ab=c^2\Rightarrow\dfrac{b}{c}=\dfrac{c}{a}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Rightarrow a=b=c\)
Thay a = b = c vào biểu thức, ta có:
\(M=\dfrac{a^{333}}{a^{111}.a^{222}}=1\)
Cho \(a,b\in\mathbb{Z},b>0\). So sánh hai số hữu tỉ \(\dfrac{a}{b}\) và \(\dfrac{a+2001}{b+2001}\) ?
Xét tích \(a\left(b+2001\right)=ab+2001a\).
\(b\left(a+2001\right)=ab+2001b\). Vì \(b>0\) nên \(b+2001>0\).
a) Nếu \(a>b\) thì \(ab+2001a>ab+2001b\)
\(a\left(b+2001\right)>b\left(a+2001\right)\)
\(\Rightarrow\dfrac{a}{b}>\dfrac{a+2001}{b+2001}\) (theo bài 5).
b) Tương tự (theo bài 5) nếu \(a< b\) thì \(\Rightarrow\dfrac{a}{b}< \dfrac{a+2001}{b+2001}\).
c) Nếu \(a=b\) thì rõ ràng \(\dfrac{a}{b}=\dfrac{a+2001}{b+2001}\).
\(\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{a\left(b+2017\right)}{b\left(b+2017\right)}\\\dfrac{a+2017}{b+2017}=\dfrac{b\left(a+2017\right)}{b\left(b+2017\right)}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{ab+2017a}{b^2+2017b}\\\dfrac{a+2017}{b+2017}=\dfrac{ab+2017b}{b^2+2017b}\end{matrix}\right.\)
Ta cần so sánh:
\(ab+2017a\) với \(ab+2017b\)
Cần so sánh \(a\) với \(b\)
Nếu \(a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+2017}{b+2017}\)
Nếu \(a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+2017}{b+2017}\)
Nếu \(a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+2017}{b+2017}\)
Mấy câu sau dễ tương tự
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow \left\{\begin{matrix} a=b\\ b=c\\ c=a\end{matrix}\right.\Leftrightarrow a=b=c\)
Khi đó: \(\frac{a^{2017}+b^{2017}}{c^{2017}}=\frac{a^{2017}+a^{2017}}{a^{2017}}=2\)
Đặt:\(\dfrac{a}{b}=\dfrac{c}{d}=@\Leftrightarrow\left\{{}\begin{matrix}a=b@\\c=d@\end{matrix}\right.\)
khi đó: \(\dfrac{a^{2017}+b^{2017}}{c^{2017}+d^{2017}}=\dfrac{b^{2017}@^{2017}+b^{2017}}{d^{2017}@^{2017}+d^{2017}}=\dfrac{b^{2017}\left(@^{2017}+1\right)}{d^{2017}\left(@^{2017}+1\right)}=\dfrac{b^{2017}}{d^{2017}}\)
\(\dfrac{\left(a-b\right)^{2017}}{\left(c-d\right)^{2017}}=\dfrac{\left(b@-b\right)^{2017}}{\left(d@-d\right)^{2017}}=\dfrac{\left[b\left(@-1\right)\right]^{2017}}{\left[d\left(@-1\right)\right]^{2017}}=\dfrac{b^{2017}}{d^{2017}}\)
Ta có điều phải chứng minh
Nếu:
\(a>b\)
\(\Rightarrow\dfrac{a}{b}>1\Rightarrow\dfrac{a+2017}{b+2017}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+2017}{b+2017}\)
Nếu:
\(a< b\)
\(\Rightarrow\dfrac{a}{b}< 1\Rightarrow\dfrac{a+2017}{b+2017}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+2017}{b+2017}\)
Nếu:
\(a=b\)
\(\Rightarrow\dfrac{a}{b}=1\Rightarrow\dfrac{a+2017}{b+2017}=1\Rightarrow\dfrac{a}{b}=\dfrac{a+2017}{b+2017}=1\)