Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a,b\) )
=>đpcm
Cô si
\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2c\)
\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}\cdot\frac{ab}{c}}=2a\)
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2b\)
Cộng lại ta có:
\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\Rightarrowđpcm\)
a) Bình phương 2 vế được: \(\frac{4ab}{a+b+2\sqrt{ab}}\le\sqrt{ab}\)
<=> \(4ab\le\sqrt{ab}\left(a+b\right)+2ab\)
<=>\(\sqrt{ab}\left(a+b\right)\ge2ab\)
<=>\(a+b\ge2\sqrt{ab}\)
<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)
Vậy \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\forall a,b>0\)
1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)
\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)
2a)với a,b,c là các số thực ta có
\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)
tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)
tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)
cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)
dấu "=" xảy ra khi và chỉ khi a=b=c
\(\text{Ta có }:\left(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\right)^2\\ =x^2+y^2+2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}+z^2+t^2\)
Áp dụng định lí bu-nhi-a-cốp-xki:
\(\Rightarrow2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}\ge2\sqrt{\left(xz+yt\right)^2}=2xz+2yt\\ \Rightarrow\left(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\right)^2\\ \ge x^2+y^2+2xz+2yt+z^2+t^2\\ =x^2+2xz+z^2+y^2+2yt+t^2\\ =\left(x+z\right)^2+\left(y+t\right)^2\\ \Rightarrow\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{x}{y}=\frac{z}{t}\)
Áp dụng BDT trên
\(\Rightarrow\sqrt{a^2+b^2-\sqrt{3}ab}+\sqrt{b^2+c^2-bc}\\ =\sqrt{\frac{3}{4}a^2-\sqrt{3}ab+b^2+\frac{1}{4}a^2}+\sqrt{b^2-bc+\frac{1}{4}c^2+\frac{3}{4}c^2}\\ =\sqrt{\left(\frac{\sqrt{3}}{2}a-b\right)^2+\frac{1}{4}a^2}+\sqrt{\left(b-\frac{1}{2}c\right)^2+\frac{3}{4}c^2}\\ \ge\sqrt{\left(\frac{\sqrt{3}}{2}a-b+b-\frac{1}{2}c\right)^2+\left(\frac{1}{2}a+\frac{\sqrt{3}}{2}c\right)^2}\\ =\sqrt{\left(\frac{\sqrt{3}}{2}a-\frac{1}{2}c\right)^2+\left(\frac{1}{2}a+\frac{\sqrt{3}}{2}c\right)^2}\\ =\sqrt{\frac{3}{4}a^2-\frac{\sqrt{3}}{2}ac+\frac{1}{4}c^2+\frac{1}{4}a^2+\frac{\sqrt{3}}{2}ac+\frac{3}{4}c^2}\\ \\ =\sqrt{a^2+c^2}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{\frac{\sqrt{3}}{2}a-b}{\frac{1}{2}a}=\frac{b-\frac{1}{2}c}{\frac{\sqrt{3}}{2}c}\)
\(\Leftrightarrow\frac{\sqrt{3}a-2b}{a}=\frac{2b-c}{\sqrt{3}c}\\ \Leftrightarrow\sqrt{3}c\left(\sqrt{3}a-2b\right)=a\left(2b-c\right)\\ \Leftrightarrow3ac-2\sqrt{3}bc=2ab-ac\\ \Leftrightarrow4ac-2\sqrt{3}bc-2ab=0\)
\(\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\Leftrightarrow\frac{1}{1+a}+\frac{1}{1+b}-\frac{2}{1+\sqrt{ab}}\ge0\)
\(\Leftrightarrow\left(\frac{1}{a+1}-\frac{1}{1+\sqrt{ab}}\right)+\left(\frac{1}{b+1}-\frac{1}{1+\sqrt{ab}}\right)\ge0\)
\(\Leftrightarrow\frac{\sqrt{ab}-a}{\left(a+1\right)\left(1+\sqrt{ab}\right)}+\frac{\sqrt{ab}-b}{\left(b+1\right)\left(1+\sqrt{ab}\right)}\ge0\)
\(\Leftrightarrow\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\left(a+1\right)\left(1+\sqrt{ab}\right)}+\frac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{\left(b+1\right)\left(1+\sqrt{ab}\right)}\ge0\)
\(\Leftrightarrow\frac{-\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)\left(b+1\right)+\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)\left(a+1\right)}{\left(a+1\right)\left(b+1\right)\left(1+\sqrt{ab}\right)}\ge0\)
\(\Leftrightarrow\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a\sqrt{b}+\sqrt{b}-b\sqrt{a}-\sqrt{a}\right)}{\left(a+1\right)\left(b+1\right)\left(1+\sqrt{ab}\right)}\ge0\)
\(\Leftrightarrow\frac{\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{ab}-1\right)}{\left(a+1\right)\left(b+1\right)\left(1+\sqrt{ab}\right)}\ge0\)(đúng với \(ab\ge1\))
Vậy \(\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)
Đẳng thức xảy ra khi a = b
Bạn tham khảo:
Câu hỏi của Nguyễn Bảo Trân - Toán lớp 9 | Học trực tuyến
\(bdt\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (đúng) . Dấu "=" khi a=b
Xét \(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng với mọi a, b)
\(\Leftrightarrow\) đpcm