Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có ; \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a^2+2ab+b^2\right)\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=2\)
Vậy A đạt giá trị nhỏ nhất bằng 2 tại a = b = 1
b) Ta có : \(B=\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2=\left(a^2+\frac{1}{a^2}\right)+\left(b^2+\frac{1}{b^2}\right)+4\)
Lại có : \(a^2+\frac{1}{a^2}\ge2\) ; \(b^2+\frac{1}{b^2}\ge2\)
\(\Rightarrow B\ge2+2+4=8\). Dấu "=" xảy ra khi \(\hept{\begin{cases}a^2=\frac{1}{a^2}\\b^2=\frac{1}{b^2}\\a+b=2\end{cases}}\) \(\Leftrightarrow a=b=1\)(vì a,b>0)
Vậy B đạt giá trị nhỏ nhất bằng 8 tại a = b = 1
Cho a,b,c > 0 thỏa mãn: a2+b2+c2=1
Tìm GTNN của C= \(\frac{bc}{a}\)+\(\frac{ac}{b}\)+\(\frac{ab}{c}\)
Áp dụng Cosi có \(a^2+b^2\ge2ab\left(1\right),\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\left(2\right)\)
Nhân (1) và (2) có \(\left(a^2+b^2\right)\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\ge4\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{4}{a^2+b^2}=\frac{4}{10}=\frac{2}{5}\)
Vậy Min q=2/5 khi a=-b
\(\frac{8x+8-8}{\left(x-1\right)\left(x+1\right)}=\frac{8\left(x+1\right)-8}{\left(x-1\right)\left(x+1\right)}=\frac{8}{x-1}-\frac{8}{\left(x-1\right)\left(x+1\right)}\)
\(x-1< x+1\Rightarrow\left\{{}\begin{matrix}x-1=1,2,-8,-4\\x+1=-1,-2,8,4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2,3,-7,-3\\x=-2,-3,7,3\end{matrix}\right.\Rightarrow x=-3,3}\)
Lời giải:
Áp dụng BĐT AM-GM:
$\frac{a^2}{4}+\frac{1}{a^2}\geq 1$
$\frac{b^2}{4}+\frac{1}{b^2}\geq 1$
$\frac{c^2}{4}+\frac{1}{c^2}\geq 1$
$\frac{3}{4}a^2\geq \frac{3}{2}; \frac{3}{4}b^2\geq \frac{3}{2}; \frac{3}{4}c^2\geq \frac{3}{2}$ do $a,b,c\geq \sqrt{2}$
Cộng theo vế các BĐT trên ta có:
$P\geq \frac{15}{2}$
Vậy $P_{\min}=\frac{15}{2}$ khi $a=b=c=\sqrt{2}$
2) bổ đề : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) (x,y > 0)
\(< =>\frac{\left(x+y\right)^2-4xy}{xy\left(x+y\right)}\ge0< =>\frac{\left(x-y\right)^2}{xy\left(x+y\right)}\ge0\)
Dấu "=" xảy ra <=> x=y
Có \(Q=\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{4}{a^2+b^2}=\frac{4}{10}=\frac{2}{5}\)
Dấu "=" xảy ra <=> \(a^2=b^2\)
Ta có hệ \(\hept{\begin{cases}a^2=b^2\\a^2+b^2=10\end{cases}}< =>a=b=\sqrt{5}\left(do.a>b>0\right)\)
Vậy minQ=2/5 khi \(a=b=\sqrt{5}\)
Xét A = ........ĐK : x\(\ne\)-1 (*)
B=....... ĐK : x\(\ne\)-1 ; x\(\ne\) 3 (**)
a) Ta có : x2-4x+3
\(\Leftrightarrow\)x2 -3x-x+3
\(\Leftrightarrow\)(x -1) (x-3)
.......................
\(\Leftrightarrow\)x=1(thỏa mãn đk (*)
.,,,,,,,,,,,x=3 (thỏa mãn ĐK(*)
Thay x=..... vào A, ta được:................................
...............................................................................
Vậy tai thì A=..... hoặc A =..................
b) Xét B=................... ĐK.............
Ta có x2 -2x-3
= x2--3x+x -3
= (x+1) (x-3)
\(\Rightarrow B=\frac{x+3}{x+1}+\frac{x-7}{\left(x+1\right)\left(x-3\right)}+\frac{1}{x-3}\)
= \(\frac{\left(x+3\right)\left(x-3\right)+x-7+x+1}{\left(x+1\right)\left(x-3\right)}\)
=\(\frac{x^2-9+2x-6}{\left(x+1\right)\left(x-3\right)}\)
=\(\frac{x^2+2x-15}{\left(x+1\right)\left(x-3\right)}\)
=\(\frac{\left(x+1\right)^2-16}{\left(x+1\right)\left(x-3\right)}\)
=\(\frac{\left(x+1+4\right)\left(x+1-4\right)}{\left(x+1\right)\left(x-3\right)}\)
=\(\frac{\left(x+5\right)\left(x-3\right)}{\left(x+1\right)\left(x-3\right)}\)
=\(\frac{x+5}{x+1}\)
Vậy B=.......với x\(\ne\)..............
c) +) Tìm x để B= 2
Để B=2 thì \(\frac{x+5}{x+1}\)=2
\(\Leftrightarrow\frac{x+5-2\left(x+1\right)}{x+1}=0\)
\(\Leftrightarrow x+5-2x-2=0\)
........................................................
Vậy để B=2 thì x=...........
TƯƠNG TỰ B=x-1
d) XÉT B=...........ĐK.....................
ĐỂ B>2 THÌ ........................
GIẢI RA
g) Xét........................
Ta có \(B=\frac{x+5}{x+1}=1+\frac{4}{x+1}\)
Vì x\(\in\)Z nên (x+1) \(\in\)Z
Do đó A\(\in\)Z \(\Leftrightarrow\)\(1+\frac{4}{X+1}\)\(\inℤ\)
\(\Leftrightarrow\frac{4}{X+1}\inℤ\)
\(\Leftrightarrow4⋮\left(X+1\right)\)
\(\Leftrightarrow\left(X+1\right)\inƯ\left(4\right)\)
\(\Leftrightarrow\left(X+1\right)\in\hept{\begin{cases}\\\end{cases}\pm1;\pm2;\pm4}\)
Nếu x+1=1\(\Leftrightarrow\)x=0(thỏa mãn ĐK(**); X\(\inℤ\)
.............................................................................................
...............................................................................
Vậy để B nguyên thì x\(\in\hept{\begin{cases}\\\end{cases}}\).......................................................
e) XIN LỖI MÌNH CHỈ BIẾT TÌM GTNN CỦA B VỚI MỌI GIA TRỊ CỦA X
Mình xem phép làm câu 1 ạ.
Đề là?
\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)(1)
Chứng minh tương đương
\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)<=> 12ac - 9bc - 9ab + 6b2 \(\le\)0 ( quy đồng ) (2)
Từ (1) <=> 2ac = ab + bc Thay vào (2) <=> 6ab + 6bc - 9bc - 9ab + 6b2 \(\le\)0
<=> a + c \(\ge\)2b
Từ (1) => \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{4}{a+c}\)
=> a + c \(\ge\)2b đúng => BĐT ban đầu đúng
Dấu "=" xảy ra <=> a = c = b
\(Q=\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{4}{a^2+b^2}=\frac{4}{10}=\frac{2}{5}\)
Dấu "=" xảy ra <=> a = b và a^2 +b^2 = 10; a, b> 0 <=> a = b = \(\sqrt{5}\)