\(\frac{2}{a^2+b^2}+\frac{32}{ab}+2ab\sqr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2019

\(A=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab\)

\(=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{34}{ab}+\frac{17}{8}ab-\frac{1}{8}ab\)

\(\ge2.\frac{4}{a^2+b^2+2ab}+2\sqrt{\frac{34}{ab}.\frac{17}{8}ab}-\frac{1}{8}.\frac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow A\ge2.\frac{4}{\left(a+b\right)^2}+2.\frac{17}{2}-\frac{1}{8}.\frac{4}{4^2}+17-\frac{1}{2}\)

\(\Leftrightarrow A\ge\frac{1}{2}+17-\frac{1}{2}=17\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=2\)

Chúc bạn học tốt !!!

21 tháng 11 2021

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

30 tháng 5 2018

B.C.S :">

30 tháng 5 2018

Từ giả thiết ta dễ thấy dấu "=" xảy ra khi a=1, b=3, c=5

Áp dụng BĐT Cauchy Schawrz, ta có:

\(a^2+\frac{b^2}{3}+\frac{c^2}{5}\ge\frac{\left(a+b+c\right)^2}{1+3+5}\Rightarrow2\sqrt{a^2+\frac{b^2}{3}+\frac{c^2}{5}}\ge\frac{2\left(a+b+c\right)}{3}\) 

\(\frac{1}{a}+\frac{9}{b}+\frac{25}{c}\ge\frac{\left(1+3+5\right)^2}{a+b+c}\Rightarrow3\sqrt{\frac{1}{a}+\frac{9}{b}+\frac{25}{c}}\ge\frac{27}{\sqrt{a+b+c}}\)

Từ đó, suy ra

\(A\ge\frac{2\left(a+b+c\right)}{3}+\frac{27}{\sqrt{a+b+c}}=\frac{a+b+c}{6}+\frac{a+b+c}{2}+\frac{27}{2\sqrt{a+b+c}}+\frac{27}{2\sqrt{a+b+c}}\ge\frac{9}{6}+3\sqrt[3]{\frac{729}{8}}=15\)

Dấu "=" xảy ra khi a=1, b=3, c=5

Mong là không có gì sai sót!