Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái này chỉ theo ý kiến tớ nhé:
ta có: \(\left(c-a-b\right)^2\ge0\)
=> \(a^2+b^2+c^2\ge2ac+2bc-2ab\)
<=> \(\frac{5}{6}\ge ac+bc-ab\)
<=> \(1>ac+bc-ab\)
abc>0 chia cho hai vế
\(\frac{1}{abc}>\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\)
Ta có: \(\left(a+b-c\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab-bc-ca\right)\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge2ca+2bc-2ab\)(1)
Mặt khác \(a^2+b^2+c^2=\frac{5}{3}\Leftrightarrow a^2+b^2+c^2< 2\)(2)
Từ (1)(2) \(\Rightarrow2bc+2ca-2ab\le a^2+b^2+c^2< 2\)
Do a,b,c>0 \(\Leftrightarrow\frac{2bc+2ca-2ab}{2abc}< \frac{2}{2abc}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)
đặt A=...
Áp dúng bất đẳng thức bu nhi a ta có
\(A^2\le3\left(1+a^2+2bc+1+b^2+2ac+1+c^2+2ab\right)=3\left[\left(a+b+c\right)^2+3\right]\)
=> \(A^2\le36\Rightarrow A\le6\) (ĐPCM)
dấu = xảy ra <=> a=b=c=1
Ta có a2 + b2 + ab < 1
<=> (a - b)(a2 + b2 + ab) < a3 + b3
<=> a3 - b3 < a3 + b3
<=> 2b3 > 0 (đúng)
\(a-b=a^3+b^3\Rightarrow a-b>0\)
Ta có:\(a^3+b^3>a^3-b^3\)
\(\Rightarrow a-b>a^3-b^3\)
\(\Rightarrow a-b>\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\Rightarrow a^2+ab+b^2< 1\Rightarrow a^2+b^2< 1\) vì \(ab>0\)